Denotational Semantics

Slides mostly follow
John C. Reynolds’ book Theories of Programming Languages and

Xinyu Feng’s lecture notes

https://www.cs.cmu.edu/~jcr/
https://cs.nju.edu.cn/xyfeng

Denotational semantics

* |dea: programs — mathematical objects

* Finding domains that represent what programs do
 Partial functions
* Games between environtment and the system

e Should be compositional
* Built out of the denotations of sub-programs

* Should be abstract
» Syntax independence, full abstraction

This class

* Formulating the denotational semantics for the
simple imperative programming language (IMP)

* Basics of domain theory

Recall the syntax of IMP

(IntExp) e :=n|x|e+el|le —e]..

(BoolExp) b ::=true | false
le=¢ele<e
| =b|bADb|bVDb]..

(Comm) c ::= sKkip

X =e

C;C

if b then c else c
while b do c

Denotational semantics for Exps

(IntExp) e :=n|x|e+el|le —e]..

(BoolExp) b ::=true | false
le=¢ele<e
| =b|bADb|bVDb]..

(State) o € Var » Z

[—1; € IntExp — State — Z
[-1g € BoolExp — State —» B

Denotational semantics for Exps 1

(IntExp) e :=n|x|e+el|le —e]..

(BoolExp) b ::=true | false
le=¢ele<e
| =b|bADb|bVDb]..

(State) o € Var » Z

[=1; ::= 2e.do.n,if (e,0) »* (n,0) and |n| = n
o true, if (b,0) »* (true, o)
[—1g ::= Ab. Ao { false. if (b.o) > (False, o)

Denotational semantics for Exps 2

(IntExp) e :=n|x|e+el|le —e]..

(BoolExp) b ::=true | false
le=¢ele<e
| =b|bADb|bVDb]..

(State) o € Var » Z

[—1; ::=2Ae.Ao.n,if (e,0) U n

o true, if (b,o) | true
[—1g ::= Ab. Ao { false. if (b.o) U false

Denotational semantics for Exps 3

(IntExp) e :=n|x|e+ele —e]|..

(BoolExp) b ::= true | false
le=¢ele<e
| =b|bADb|bVD]..

(State) o € Var - Z

[n]; o ::= |n] [x]; 0 =0 (x)
le1 + ez]l; 0 :=[e1]; 0 + [ex];0
[true]go ::= true [false]go ::= false

[—b]go ::= if [b] go then false else true ...

Denotational semantics for Comm

[-]c € Comm — State — ?

e Either
* Terminate, with a final State;

* Nonterminating, without a final state, e.g.,
while true do skip

* Must be partial if 7= State

Denotational semantics for Comm

[—] € Comm — State — State,

* Foranyset S, letS;, =S U{Ll} (assuming L& S)

e 1, usually called “bottom”, for nontermination

* The denotational semantics of Comm made total

Semantics for skip and assign.

e [sKkiplco =0

* [x =e]co = o{x ~ [e];0}

* E.g,

[x :=x4+10],{(x,32)}

={(x,32)Hx ~ [x + 10],{(x,32)} }

= {(x, 32) H{x ~ ([x];{(x,32)} + [10],{(x,32)})}
= {(x,32){x ~ (32 + 10)}

= {(x,32)H{x ~» 42}

={(x,42)}

Semantics for conditionals

[c1]c o, if [b]lgo = true

+ [if b then c, else ;] 0 ”z{[[(:z]]ca, if [bgo = false

* E.g,

[if x < 0 then x = 0 — x else sKip] . {(x,—3)}
=x=0—-x]c{(x,—3)} since [x < 0]z {(x,—3)} = true

= {(x, =3)H{x ~ [0 — x]; {(x, -3)}}
={(x,3)}

[if x < 0 then x = 0 — x else sKkip]. {(x,5)}

= [[sKkip] . {(x,5)} since [x < 0]lg{(x,5)} = false
= {(x,5)}

Semantics for sequential composition

L 1) if [[Cl]]ca- =1
les coleo = {[[cz]]c o [c1]c o, otherwise
* Weextendf€ES—>T, tof, €5, »T,

fux =

{ L,ifx=1

f x ,otherwise

» Effectively it defines a lift operator
(FLE€EE->T) > (S.~Ty)

* So [cy; callco = ([eale)u(lerlc o)

Semantics of loops

 |dea: define the meaning of while b do c as that of
if b then (c; while b do ¢) else skip

* That s,
[while b do c] .o
= [[if b then (c; while b do ¢) else skip]. o

(([while b do c]), (Ic]co),if [blgo = true
o ,otherwise

\

* Not syntax directed, not compositional

Semantics of loops

* We may view [while b do c]| as a sulotion for this equation:
[while b do c] .0 =

([while b do c[|)([c]lc0),if [b]go = true
o ,otherwise

* That is, a fixed-point of
F ::= Af € State — State,.

Ao € State. {fﬂ([[c]]ca), if[[b]]Bq = true
o , otherwise

Semantics of loops

That is, a fixed-point of
F ::= Af € State — State;.

fu(lclco), iflblgo = true
o

Ao € State. _
, otherwise

However, not every F € (State — State,) — (State — State,)
has a fixed-point, and some may have more than one.

Example: for any o', Ao. g’ (a constant function) is a solution for

[while true do x = x + 1],

We need to guarantee the meaning is uniquely determined by the
equation.

Semantics of loops

* Intuition: the limit of approximations W,

* First and least accurate approximation (O-iteration)
Wy ::= Ao € State. L

* 1 iteration
Wy «:= F W, = Ao € State.if [b] go then (W,),([cllc0) else o
= Ao € State.if [b] go then L else o

* 2 iterations
W, ::= F W; = Ao € State.if [b]go then (W;),([cl;0) else o

* n+1l iterations
Wit = F W,

Semantics of loops

Intuition: the limit of finite approximations W,

First and least accurate approximation (O-iteration)
Wy ::= Ao € State. L

n+1 iterations
Wit = F W,

The limit W = lim,,,, W,

How do we take limits in a space of functions?

Monotonicity + bound
* Anordering T suchthat W, E W, &S W, £ ..
* Least upper bound of the sequence

Partially ordered sets

* A binary relation ponSis

* Reflexive iff VxeS.xpx

* Transitive iff xpyAypz=>xpz
* Antisymmetric iff xpyAypx=>x=y
* Symmetric iff xpy=>ypx

 C is a preorder on S iff E is reflexive and transitive

 C is a partial order on S iff E is a preorder on S
and antisymmetric

 Aposet S: S with a partial order Eon §
* Adiscretely ordered S: S with Ids as a partial order

Hasse diagrams

* Picturize partial orders
* Points — elements; lines — direct predecessor

e E.g., C as the partial order on set 2{&P.c}

- {a,b,c}\

{b,C}\ = fa,c}
{c}

_{a,b
by | A

N

U}

13}

Monotonicity and upper bound

* f €S5S — T is monotone iff xCy=>fxEfy

* yisupper boundof X € § iff VxeX.xE vy

Least upper bound

* yisa least upper bound (lub) of X € § iff
* yis upper bound of X, and
* Vz € S.zisanupperboundof X > yC z

e If Sisaposetand X € §, there is at most one lub
of X (denoted by U X)

e L1 @ =1, the least element of S (if exists)

* Let X € P(S) such that U X exists forall X € X,
H{uX|XeX}=uUXx)

if either of these lub exists

Domains

A chain C is a countably infinite non-decreasing sequence
X0 C X1 C ...

We may also use C to represent the set of elements on the chain

The limit of a chain C is the lub of all its elements when it exists
A chain C is interesting if (LU C) &€ C

A poset D is a predomain (or complete partial order — cpo) if
every chain elements in D has a limitin D

A predomain D is a domain (or pointed cpo) if D has a least
element L

Lifting

* D, is alifting of the predomain D if:
e 1&D
* xEp, yiffeitherx =LorxEp y

* Any set S can be viewed as a predomain with
discrete partial order C::= Id;

* D is a flat domain if D — { L} is discretely ordered

Continuous Functions

* If D and D' are predomains, f € D —» D' is a
continuous function if it maps limits to limis:

fWe)=u{fx;|x; €C}foreverychainCinD

* Continuous functions are monotone (x E y E vy ...)

* Monotone functions may not be continuous

* Suppose C = xg E xq E ---is an insteresting chainin D
with a limitx, and D' = {1, T}suchthat LE' T

* Consider f = Ay.ify = xthen T else 1L

Monotone vs continuous

* A monotone function f € D — D’ is continuous iff
forall interesting chains x, E x; E --- we have

flugZe x;) EUiZ, (f x;)
* Proof.

The (pre)domain of continuous
functions

* Pointwise ordering of functions in P —» P’, where P' is a
predomain:

C,g “=Vx€EP.fxEp gx
* Proposition:
If P and P’ are predomains, then the set [P — P'] of

continuous functions in P — P’ with partial order =_, is a
predomain, such that for any chain f, E_, f;{ E_, ..., we have

U; f; = Ax € P.LU; (f; x)

If P" is a domain, then [P — P'] is a domain with
1l ,=Ax € P. Ly

Examples: continuous functions

* For predomains P, P’ and P",

* If f € P - P’isconstant, then f € [P - P’]
« Idp € [P > P]
Iffe|P—->Plandg€e[P' > P"],gof €|P - P"]

*Iff€[P > P (=of)E|[P'>P"]> [P P"]]

Strict functions and lifting

* If D and D' are domains, f € D — D' isstrictif f L = 1’

 If P and P’ are predomains, f € P — P’, then the strict funcion
fiLu=Ax€P,.if x=1then L' else f x

is the lifting of f to P, — P|:.

* If P' is a domain, then the strict function
fii=Ax €P,.if x=1Lthen 1’ else f x

is the source lifting of f to P, — P’

* If f is continuous, so are f; and f;.

* (—), and (—) are also continuous.

Least fixed-point

* Theorem [Kleene fixed-point theorem]: |f D is a
domain and f € [D — D] then x =:=U2, (f L1)is
the least fixed-point of f.

* Proof.

x is well-defined because 1= f £ f% E - is a chain.
x is a fixed-point because

fa=1 (02 (F' 1)) =uiZo (F(F' 1)) =
For any fixed-pointyof f, LCy= f LC fy=y.

By induction, Vi € N. f! E y. So y is an upper bound of
thechain LC f L C ---.Sincexisalub, x T y.

The least fixed-point operator

* Let |
Yo =Af €[D - D]uZ, (f* L)

*Vf €D — D].Yp f is the least fixed-point of f.

Y, €|[D > D] - D]

Back to semantics of loops

Recall [while b do c]|,0 =
([while b do c|) ([cllc0),if [b]lgo = true
o ,otherwise

It implies that [while b do c] . is a fixed-point of
F ::= Af € State — State,.Ao € State.if [b]zo then f;([c]c0) else o

We pick the least fixed-point
[[While b dO C]]C o= Y[State_)StateJ_]F

Coincides with our intuition based on operational semantics:
W = lim W, = lim F"W,

n—>00 n—->00

Abstractness of semantics

e Abstract semantics are an attempt to separate the
important properties of a language (what computations can
it express) from the unimportant (how exactly computations
are represented).

* The more terms are considered equal by a semantics, the
more abstract it is.

* A semantic function [—]; is at least as abstract as [—], if
Ve, c'. [clg = [c'lp = [clq = [c']1

Observation and context

If there are other means of observing the result of a computation,
a semantics may be incorrect if it equates too many terms.

Observation: “needs of the user”

Let O be an observation, and O be a set of observations, i.e.
0O € 0O € Comm — Outcomes

A context C is a command with a hole | | . Use C for all contexts.

A command c can be placed in the hole of C, yielding C|c] (not
substitution — name capture is allowed).

Eg,C=(Mmewvarx:=1in|[];y = x)

Soundness and full abstractness

* A semantic function [—] is sound (with respect to O) iff
Ve, c'.[c] = [c'] 2 VO € 0.VC € C.O(C|c]) = 0(C|[c'])

* A semantic function [—] is fully abstract (with respect to O)
ff
Ve, c'.[c] = [c'] © VO € 0.VC € C.O(C|c]) = 0(C|c'])

i.e. [—] is the “most abstract” sound semantics.

* Proposition: if [—]; and [—]; are both fully abstract
semantics w.r.t. O, then [—], = [

Cull abstractness of semantis for
VP

* Let O, , ::= Ac.if [c]co = 1 then L else ([c]c0) x
e Let O be the set of all such observations, i.e.

0 ={0,, |0 € State,x € Var } € Comm - 7,

* Proposition: [—] . is fully abstract w.r.t. .
* [—]¢ is sound: by compositionality, if [c] = [c']¢, then for any
context C, [C[c]]¢c = [C[c']]¢ (induction). So O, »(Clc]) =
Oy (C[c']) for any observation O, ,.
* [—I¢ is most abstract: consider the empty context C =-. If

Oy x(c) = 04 ,(c") holds for all x € Var and o € State, we know
by definition [c] = [c'lc.

Main points of denotational
semantics

* |dea: programs =2 mathematical objects

* Theoretical foundation: domain theory

e Poset, lub
* Predomain (cpo), domain (pointed cpo)
e Continuous functions, least fixed-point

 Compositional and abstract

More on this topic

 Denotations for newvar, ...
* Observing termination of closed commands
* Extensions, e.g., the fail command

* Please refer to Chapter 2 of Theories of
Programming Languages by Reynolds

