
Denotational Semantics

Slides mostly follow
John C. Reynolds’ book Theories of Programming Languages and

Xinyu Feng’s lecture notes

https://www.cs.cmu.edu/~jcr/
https://cs.nju.edu.cn/xyfeng

Denotational semantics

• Idea: programs → mathematical objects

• Finding domains that represent what programs do
• Partial functions
• Games between environtment and the system

• Should be compositional
• Built out of the denotations of sub-programs

• Should be abstract
• Syntax independence, full abstraction

This class

• Formulating the denotational semantics for the
simple imperative programming language (IMP)

• Basics of domain theory

Recall the syntax of IMP

𝐼𝑛𝑡𝐸𝑥𝑝 𝑒 ∷= 𝐧 𝑥 𝑒 + 𝑒 𝑒 − 𝑒 …

𝐵𝑜𝑜𝑙𝐸𝑥𝑝 𝑏 ∷= 𝐭𝐫𝐮𝐞 | 𝐟𝐚𝐥𝐬𝐞
| 𝑒 = 𝑒 | 𝑒 < 𝑒
¬𝑏 𝑏 ∧ 𝑏 𝑏 ∨ 𝑏 …

𝐶𝑜𝑚𝑚 𝑐 ∷= 𝐬𝐤𝐢𝐩
| 𝑥 ≔ 𝑒
| 𝑐; 𝑐
| 𝐢𝐟 𝑏 𝐭𝐡𝐞𝐧 𝑐 𝐞𝐥𝐬𝐞 𝑐
| 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐

Denotational semantics for Exps

𝐼𝑛𝑡𝐸𝑥𝑝 𝑒 ∷= 𝐧 𝑥 𝑒 + 𝑒 𝑒 − 𝑒 …

𝐵𝑜𝑜𝑙𝐸𝑥𝑝 𝑏 ∷= 𝐭𝐫𝐮𝐞 | 𝐟𝐚𝐥𝐬𝐞
| 𝑒 = 𝑒 | 𝑒 < 𝑒
¬𝑏 𝑏 ∧ 𝑏 𝑏 ∨ 𝑏 …

𝑆𝑡𝑎𝑡𝑒 𝜎 ∈ 𝑉𝑎𝑟 → ℤ

− ! ∈ 𝐼𝑛𝑡𝐸𝑥𝑝 → 𝑆𝑡𝑎𝑡𝑒 → ℤ
− " ∈ 𝐵𝑜𝑜𝑙𝐸𝑥𝑝 → 𝑆𝑡𝑎𝑡𝑒 → 𝔹

Denotational semantics for Exps 1

𝐼𝑛𝑡𝐸𝑥𝑝 𝑒 ∷= 𝐧 𝑥 𝑒 + 𝑒 𝑒 − 𝑒 …

𝐵𝑜𝑜𝑙𝐸𝑥𝑝 𝑏 ∷= 𝐭𝐫𝐮𝐞 | 𝐟𝐚𝐥𝐬𝐞
| 𝑒 = 𝑒 | 𝑒 < 𝑒
¬𝑏 𝑏 ∧ 𝑏 𝑏 ∨ 𝑏 …

𝑆𝑡𝑎𝑡𝑒 𝜎 ∈ 𝑉𝑎𝑟 → ℤ

− ! ∷= 𝜆𝑒. 𝜆𝜎. 𝑛 , 𝑖𝑓 𝑒, 𝜎 →∗ 𝐧, 𝜎 𝑎𝑛𝑑 𝐧 = 𝑛

− " ∷= 𝜆𝑏. 𝜆𝜎. Z 𝑡𝑟𝑢𝑒, 𝑖𝑓 𝑏, 𝜎 →∗ 𝐭𝐫𝐮𝐞, 𝜎
𝑓𝑎𝑙𝑠𝑒, 𝑖𝑓 𝑏, 𝜎 →∗ 𝐟𝐚𝐥𝐬𝐞, 𝜎

Denotational semantics for Exps 2

𝐼𝑛𝑡𝐸𝑥𝑝 𝑒 ∷= 𝐧 𝑥 𝑒 + 𝑒 𝑒 − 𝑒 …

𝐵𝑜𝑜𝑙𝐸𝑥𝑝 𝑏 ∷= 𝐭𝐫𝐮𝐞 | 𝐟𝐚𝐥𝐬𝐞
| 𝑒 = 𝑒 | 𝑒 < 𝑒
¬𝑏 𝑏 ∧ 𝑏 𝑏 ∨ 𝑏 …

𝑆𝑡𝑎𝑡𝑒 𝜎 ∈ 𝑉𝑎𝑟 → ℤ

− ! ∷= 𝜆𝑒. 𝜆𝜎. 𝑛 , 𝑖𝑓 𝑒, 𝜎 ⇓ 𝑛

− " ∷= 𝜆𝑏. 𝜆𝜎. Z 𝑡𝑟𝑢𝑒, 𝑖𝑓 𝑏, 𝜎 ⇓ 𝑡𝑟𝑢𝑒
𝑓𝑎𝑙𝑠𝑒, 𝑖𝑓 𝑏, 𝜎 ⇓ 𝑓𝑎𝑙𝑠𝑒

Denotational semantics for Exps 3

𝐼𝑛𝑡𝐸𝑥𝑝 𝑒 ∷= 𝐧 𝑥 𝑒 + 𝑒 𝑒 − 𝑒 …

𝐵𝑜𝑜𝑙𝐸𝑥𝑝 𝑏 ∷= 𝐭𝐫𝐮𝐞 | 𝐟𝐚𝐥𝐬𝐞
| 𝑒 = 𝑒 | 𝑒 < 𝑒
¬𝑏 𝑏 ∧ 𝑏 𝑏 ∨ 𝑏 …

𝑆𝑡𝑎𝑡𝑒 𝜎 ∈ 𝑉𝑎𝑟 → ℤ

𝐧 ! 𝜎 ∷= 𝐧 𝑥 ! 𝜎 ∷= 𝜎(𝑥)
𝑒" + 𝑒# ! 𝜎 ∷= 𝑒" ! 𝜎 + 𝑒# !𝜎 …

𝐭𝐫𝐮𝐞 $𝜎 ∷= 𝑡𝑟𝑢𝑒 𝐟𝐚𝐥𝐬𝐞 $𝜎 ∷= 𝑓𝑎𝑙𝑠𝑒
¬𝑏 $𝜎 ∷= if 𝑏 $𝜎 then 𝑓𝑎𝑙𝑠𝑒 else 𝑡𝑟𝑢𝑒 …

Denotational semantics for 𝐶𝑜𝑚𝑚

− T ∈ 𝐶𝑜𝑚𝑚 → 𝑆𝑡𝑎𝑡𝑒 → ?

• Either
• Terminate, with a final 𝑆𝑡𝑎𝑡𝑒;
• Nonterminating, without a final state, e.g.,
𝐰𝐡𝐢𝐥𝐞 𝐭𝐫𝐮𝐞 𝐝𝐨 𝐬𝐤𝐢𝐩

• Must be partial if ?= 𝑆𝑡𝑎𝑡𝑒

Denotational semantics for 𝐶𝑜𝑚𝑚

− T ∈ 𝐶𝑜𝑚𝑚 → 𝑆𝑡𝑎𝑡𝑒 → 𝑆𝑡𝑎𝑡𝑒U

• For any set 𝑆, let 𝑆U = 𝑆 ∪ {⊥} (assuming ⊥∉ 𝑆)
• ⊥, usually called “bottom”, for nontermination

• The denotational semantics of 𝐶𝑜𝑚𝑚 made total

Semantics for skip and assign.

• 𝐬𝐤𝐢𝐩 $ 𝜎 ∷= 𝜎
• 𝑥 ≔ 𝑒 $ 𝜎 ∷= 𝜎 𝑥 ↝ 𝑒 !𝜎

• E.g.,

𝑥 ≔ 𝑥 + 𝟏𝟎 $ { 𝑥, 32 }
= 𝑥, 32 𝑥 ↝ 𝑥 + 𝟏𝟎 !{ 𝑥, 32 }
= 𝑥, 32 𝑥 ↝ (𝑥 ! 𝑥, 32 + 𝟏𝟎 ! 𝑥, 32)
= 𝑥, 32 𝑥 ↝ (32 + 10)
= 𝑥, 32 𝑥 ↝ 42
= 𝑥, 42

Semantics for conditionals

• 𝐢𝐟 𝑏 𝐭𝐡𝐞𝐧 𝑐" 𝐞𝐥𝐬𝐞 𝑐# % 𝜎 ∷= Y 𝑐" % 𝜎, if 𝑏 $𝜎 = 𝑡𝑟𝑢𝑒
𝑐# % 𝜎, if 𝑏 $𝜎 = 𝑓𝑎𝑙𝑠𝑒

• E.g.,

𝐢𝐟 𝑥 < 0 𝐭𝐡𝐞𝐧 𝑥 = 0 − 𝑥 𝐞𝐥𝐬𝐞 𝐬𝐤𝐢𝒑 % { 𝑥, −3 }
= 𝑥 = 0 − 𝑥 % 𝑥, −3 since 𝑥 < 0 $ 𝑥, −3 = 𝑡𝑟𝑢𝑒
= 𝑥,−3 𝑥 ↝ 0 − 𝑥 ! 𝑥, −3
= 𝑥, 3

𝐢𝐟 𝑥 < 0 𝐭𝐡𝐞𝐧 𝑥 = 0 − 𝑥 𝐞𝐥𝐬𝐞 𝐬𝐤𝐢𝒑 % { 𝑥, 5 }
= 𝐬𝐤𝐢𝐩 % 𝑥, 5 since 𝑥 < 0 $ 𝑥, 5 = 𝑓𝑎𝑙𝑠𝑒
= 𝑥, 5

Semantics for sequential composition

• 𝑐%; 𝑐& $ 𝜎 ∷= Z ⊥ , if 𝑐% $𝜎 = ⊥
𝑐& $ ∘ 𝑐% $ 𝜎, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• We extend 𝑓 ∈ 𝑆 → 𝑇' to 𝑓⫫ ∈ 𝑆' → 𝑇'

𝑓⫫𝑥 ∷= Z ⊥ , 𝑖𝑓 𝑥 = ⊥
𝑓 𝑥 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Effectively it defines a lift operator
(−)⫫ ∈ 𝑆 → 𝑇' → (𝑆' → 𝑇')

• So 𝑐%; 𝑐& $ 𝜎 = 𝑐& $ ⫫ 𝑐% $ 𝜎

Semantics of loops

• Idea: define the meaning of 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 as that of
𝐢𝐟 𝑏 𝐭𝐡𝐞𝐧 𝑐;𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 𝐞𝐥𝐬𝐞 𝐬𝐤𝐢𝐩

• That is,
𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 $𝜎

= 𝐢𝐟 𝑏 𝐭𝐡𝐞𝐧 𝑐;𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 𝐞𝐥𝐬𝐞 𝐬𝐤𝐢𝐩 $ 𝜎

= Z(𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 $)⫫ 𝑐 $𝜎 , if 𝑏 "𝜎 = 𝑡𝑟𝑢𝑒
𝜎 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Not syntax directed, not compositional

Semantics of loops

• We may view 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 $ as a sulotion for this equation:
𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 $𝜎 =

Z(𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 $)⫫ 𝑐 $𝜎 , if 𝑏 "𝜎 = 𝑡𝑟𝑢𝑒
𝜎 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• That is, a fixed-point of
𝐹 ∷= 𝜆𝑓 ∈ 𝑆𝑡𝑎𝑡𝑒 → 𝑆𝑡𝑎𝑡𝑒'.

𝜆𝜎 ∈ 𝑆𝑡𝑎𝑡𝑒. Z𝑓⫫ 𝑐 $𝜎 , 𝑖𝑓 𝑏 "𝜎 = 𝑡𝑟𝑢𝑒
𝜎 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Semantics of loops

• That is, a fixed-point of
𝐹 ∷= 𝜆𝑓 ∈ 𝑆𝑡𝑎𝑡𝑒 → 𝑆𝑡𝑎𝑡𝑒'.

𝜆𝜎 ∈ 𝑆𝑡𝑎𝑡𝑒. Z𝑓⫫ 𝑐 $𝜎 , 𝑖𝑓 𝑏 "𝜎 = 𝑡𝑟𝑢𝑒
𝜎 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• However, not every 𝐹 ∈ 𝑆𝑡𝑎𝑡𝑒 → 𝑆𝑡𝑎𝑡𝑒' → 𝑆𝑡𝑎𝑡𝑒 → 𝑆𝑡𝑎𝑡𝑒'
has a fixed-point, and some may have more than one.

• Example: for any 𝜎), 𝜆𝜎. 𝜎) (a constant function) is a solution for
𝐰𝐡𝐢𝐥𝐞 𝐭𝐫𝐮𝐞 𝐝𝐨 𝑥 ≔ 𝑥 + 1 $

• We need to guarantee the meaning is uniquely determined by the
equation.

Semantics of loops

• Intuition: the limit of approximations 𝑊*
• First and least accurate approximation (0-iteration)

𝑊+ ∷= 𝜆𝜎 ∈ 𝑆𝑡𝑎𝑡𝑒. ⊥
• 1 iteration
𝑊% ∷= 𝐹 𝑊+ = 𝜆𝜎 ∈ 𝑆𝑡𝑎𝑡𝑒. if 𝑏 "𝜎 then 𝑊+ ⫫(𝑐 $𝜎) else 𝜎

= 𝜆𝜎 ∈ 𝑆𝑡𝑎𝑡𝑒. if 𝑏 "𝜎 then ⊥ else 𝜎
• 2 iterations
𝑊& ∷= 𝐹 𝑊% = 𝜆𝜎 ∈ 𝑆𝑡𝑎𝑡𝑒. if 𝑏 "𝜎 then 𝑊% ⫫(𝑐 $𝜎) else 𝜎
• …
• n+1 iterations

𝑊*,% ∷= 𝐹 𝑊*

Semantics of loops

• Intuition: the limit of finite approximations 𝑊*
• First and least accurate approximation (0-iteration)

𝑊+ ∷= 𝜆𝜎 ∈ 𝑆𝑡𝑎𝑡𝑒. ⊥
• n+1 iterations

𝑊*,% ∷= 𝐹 𝑊*
• The limit 𝑊 ∷= lim*→.𝑊*

• How do we take limits in a space of functions?
• Monotonicity + bound

• An ordering ⊑ such that 𝑊! ⊑ 𝑊" ⊑ 𝑊# ⊑ …
• Least upper bound of the sequence

Partially ordered sets

• A binary relation 𝜌 on S is
• Reflexive iff ∀𝑥 ∈ 𝑆. 𝑥 𝜌 𝑥
• Transitive iff 𝑥 𝜌 𝑦 ∧ 𝑦 𝜌 𝑧 ⇒ 𝑥 𝜌 𝑧
• Antisymmetric iff 𝑥 𝜌 𝑦 ∧ 𝑦 𝜌 𝑥 ⇒ 𝑥 = 𝑦
• Symmetric iff 𝑥 𝜌 𝑦 ⇒ 𝑦 𝜌 𝑥

• ⊑ is a preorder on 𝑆 iff ⊑ is reflexive and transitive
• ⊑ is a partial order on 𝑆 iff ⊑ is a preorder on 𝑆

and antisymmetric
• A poset 𝑆: 𝑆 with a partial order ⊑ on 𝑆
• A discretely ordered 𝑆: 𝑆 with Idd as a partial order

Hasse diagrams

• Picturize partial orders
• Points – elements; lines – direct predecessor

• E.g., ⊆ as the partial order on set 2 e,f,g

Monotonicity and upper bound

• 𝑓 ∈ 𝑆 → 𝑇 is monotone iff 𝑥 ⊑ 𝑦 ⇒ 𝑓 𝑥 ⊑ 𝑓 𝑦

• 𝑦 is upper bound of 𝑋 ⊆ 𝑆 iff ∀𝑥 ∈ 𝑋. 𝑥 ⊑ 𝑦

Least upper bound

• 𝑦 is a least upper bound (lub) of 𝑋 ⊆ 𝑆 iff
• 𝑦 is upper bound of 𝑋, and
• ∀𝑧 ∈ 𝑆. 𝑧 is an upper bound of 𝑋 ⇒ 𝑦 ⊑ 𝑧

• If 𝑆 is a poset and 𝑋 ⊆ 𝑆, there is at most one lub
of 𝑋 (denoted by ⊔ 𝑋)
• ⊔ ∅ =⊥, the least element of 𝑆 (if exists)
• Let 𝒳 ⊆ 𝒫(𝑆) such that ⊔ 𝑋 exists forall 𝑋 ∈ 𝒳,

⊔ ⊔ 𝑋 𝑋 ∈ 𝒳 =⊔ ⋃𝒳
if either of these lub exists

Domains

• A chain 𝐶 is a countably infinite non-decreasing sequence
𝑥+ ⊑ 𝑥% ⊑ …

• We may also use 𝐶 to represent the set of elements on the chain

• The limit of a chain 𝐶 is the lub of all its elements when it exists
• A chain 𝐶 is interesting if ⊔ 𝐶 ∉ 𝐶

• A poset 𝐷 is a predomain (or complete partial order – cpo) if
every chain elements in 𝐷 has a limit in 𝐷

• A predomain 𝐷 is a domain (or pointed cpo) if 𝐷 has a least
element ⊥

Lifting

• 𝐷U is a lifting of the predomain 𝐷 if:
• ⊥∉ 𝐷
• 𝑥 ⊑$! 𝑦 iff either 𝑥 =⊥ or 𝑥 ⊑$ 𝑦

• Any set 𝑆 can be viewed as a predomain with
discrete partial order ⊑∷= Idd

• 𝐷 is a flat domain if 𝐷 − {⊥} is discretely ordered

Continuous Functions

• If 𝐷 and 𝐷h are predomains, 𝑓 ∈ 𝐷 → 𝐷h is a
continuous function if it maps limits to limis:
𝑓 ⊔ 𝐶 =⊔% 𝑓 𝑥& 𝑥& ∈ 𝐶 for every chain 𝐶 in 𝐷

• Continuous functions are monotone (𝑥 ⊑ 𝑦 ⊑ 𝑦…)
• Monotone functions may not be continuous
• Suppose 𝐶 = 𝑥' ⊑ 𝑥(⊑ ⋯ is an insteresting chain in 𝐷

with a limit 𝑥, and 𝐷% = ⊥,⊤ such that ⊥ ⊑% ⊤
• Consider 𝑓 = 𝜆𝑦. if 𝑦 = 𝑥 then ⊤ else ⊥

Monotone vs continuous

• A monotone function 𝑓 ∈ 𝐷 → 𝐷h is continuous iff
forall interesting chains 𝑥i ⊑ 𝑥j ⊑ ⋯ we have

𝑓 ⊔klim 𝑥k ⊑⊔klihm 𝑓 𝑥k
• Proof.

The (pre)domain of continuous
functions
• Pointwise ordering of functions in 𝑃 → 𝑃%, where 𝑃% is a

predomain:
𝑓 ⊑→ 𝑔 ∷= ∀𝑥 ∈ 𝑃. 𝑓 𝑥 ⊑*" 𝑔 𝑥

• Proposition:
If 𝑃 and 𝑃′ are predomains, then the set [𝑃 → 𝑃%] of
continuous functions in 𝑃 → 𝑃% with partial order ⊑→ is a
predomain, such that for any chain 𝑓' ⊑→ 𝑓(⊑→ …, we have

⊔k 𝑓k = 𝜆𝑥 ∈ 𝑃.⊔kh (𝑓k 𝑥)
If 𝑃′ is a domain, then [𝑃 → 𝑃%] is a domain with

⊥→= 𝜆𝑥 ∈ 𝑃. ⊥n!

Examples: continuous functions

• For predomains 𝑃, 𝑃h and 𝑃hh,

• If 𝑓 ∈ 𝑃 → 𝑃% is constant, then 𝑓 ∈ 𝑃 → 𝑃%

• Id* ∈ 𝑃 → 𝑃

• If 𝑓 ∈ 𝑃 → 𝑃% and 𝑔 ∈ 𝑃% → 𝑃%% , 𝑔 ∘ 𝑓 ∈ 𝑃 → 𝑃%%

• If 𝑓 ∈ 𝑃 → 𝑃% , −∘ 𝑓 ∈ 𝑃% → 𝑃%% → 𝑃 → 𝑃%%

Strict functions and lifting

• If 𝐷 and 𝐷) are domains, 𝑓 ∈ 𝐷 → 𝐷) is strict if 𝑓 ⊥ = ⊥)

• If 𝑃 and 𝑃) are predomains, 𝑓 ∈ 𝑃 → 𝑃), then the strict funcion
𝑓' ∷= 𝜆𝑥 ∈ 𝑃'. 𝑖𝑓 𝑥 = ⊥ 𝑡ℎ𝑒𝑛 ⊥) 𝑒𝑙𝑠𝑒 𝑓 𝑥

is the lifting of 𝑓 to 𝑃' → 𝑃'$
) .

• If 𝑃) is a domain, then the strict function
𝑓⫫ ∷= 𝜆𝑥 ∈ 𝑃'. 𝑖𝑓 𝑥 = ⊥ 𝑡ℎ𝑒𝑛 ⊥) 𝑒𝑙𝑠𝑒 𝑓 𝑥

is the source lifting of 𝑓 to 𝑃' → 𝑃)

• If 𝑓 is continuous, so are 𝑓' and 𝑓⫫.
• (−)' and (−)⫫ are also continuous.

Least fixed-point

• Theorem [Kleene fixed-point theorem]: If 𝐷 is a
domain and 𝑓 ∈ 𝐷 → D then 𝑥 ∷=⊔klim 𝑓k ⊥ is
the least fixed-point of 𝑓.
• Proof.

𝑥 is well-defined because ⊥⊑ 𝑓 ⊑ 𝑓+ ⊑ ⋯ is a chain.
𝑥 is a fixed-point because
𝑓 𝑥 = 𝑓 ⊔&,'- 𝑓& ⊥ =⊔&,'- 𝑓 𝑓& ⊥ = 𝑥

For any fixed-point 𝑦 of 𝑓, ⊥⊑ 𝑦 ⇒ 𝑓 ⊥ ⊑ 𝑓 𝑦 = 𝑦.
By induction, ∀𝑖 ∈ ℕ. 𝑓& ⊑ 𝑦. So 𝑦 is an upper bound of
the chain ⊥ ⊑ 𝑓 ⊥ ⊑ ⋯. Since 𝑥 is a lub, 𝑥 ⊑ 𝑦.

The least fixed-point operator

• Let
𝐘o = 𝜆𝑓 ∈ 𝐷 → 𝐷 .⊔klim (𝑓k ⊥)

• ∀𝑓 ∈ 𝐷 → 𝐷 . 𝐘o 𝑓 is the least fixed-point of 𝑓.

• 𝐘o ∈ 𝐷 → 𝐷 → 𝐷

Back to semantics of loops

• Recall 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 $𝜎 =

Z(𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 $)⫫ 𝑐 $𝜎 , if 𝑏 "𝜎 = 𝑡𝑟𝑢𝑒
𝜎 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• It implies that 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 $ is a fixed-point of
𝐹 ∷= 𝜆𝑓 ∈ 𝑆𝑡𝑎𝑡𝑒 → 𝑆𝑡𝑎𝑡𝑒%. 𝜆𝜎 ∈ 𝑆𝑡𝑎𝑡𝑒. if 𝑏 &𝜎 then 𝑓⫫ 𝑐 (𝜎 else 𝜎

• We pick the least fixed-point
𝐰𝐡𝐢𝐥𝐞 𝑏 𝐝𝐨 𝑐 $ ∷= 𝐘 /0102→/0102) 𝐹

• Coincides with our intuition based on operational semantics:
𝑊 ∷= lim

*→.
𝑊* = lim

*→.
𝐹*𝑊+

Abstractness of semantics

• Abstract semantics are an attempt to separate the
important properties of a language (what computations can
it express) from the unimportant (how exactly computations
are represented).

• The more terms are considered equal by a semantics, the
more abstract it is.

• A semantic function − (is at least as abstract as − ' if
∀𝑐, 𝑐%. 𝑐 ' = 𝑐% ' ⇒ 𝑐 (= 𝑐% (

Observation and context

• If there are other means of observing the result of a computation,
a semantics may be incorrect if it equates too many terms.

• Observation: “needs of the user”
• Let 𝑂 be an observation, and 𝒪 be a set of observations, i.e.

𝑂 ∈ 𝒪 ⊆ 𝐶𝑜𝑚𝑚 → 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠

• A context 𝐶 is a command with a hole . Use 𝒞 for all contexts.
• A command 𝑐 can be placed in the hole of 𝐶, yielding 𝐶 𝑐 (not

substitution – name capture is allowed).
• E.g., 𝐶 = 𝐧𝐞𝐰𝐯𝐚𝐫 𝑥 ≔ 1 𝐢𝐧 ; 𝑦 ≔ 𝑥

Soundness and full abstractness

• A semantic function − is sound (with respect to 𝓞) iff
∀𝑐, 𝑐%. 𝑐 = 𝑐% ⇒ ∀𝑂 ∈ 𝒪. ∀𝐶 ∈ 𝒞. 𝑂 𝐶 𝑐 = 𝑂 𝐶 𝑐%

• A semantic function − is fully abstract (with respect to 𝓞)
iff
∀𝑐, 𝑐%. 𝑐 = 𝑐% ⇔ ∀𝑂 ∈ 𝒪. ∀𝐶 ∈ 𝒞. 𝑂 𝐶 𝑐 = 𝑂 𝐶 𝑐%

i.e. − is the “most abstract” sound semantics.

• Proposition: if − ' and − (are both fully abstract
semantics w.r.t. 𝒪, then − ' = − (

Full abstractness of semantis for
IMP
• Let 𝑂D,F ∷= 𝜆𝑐. if 𝑐 G𝜎 = ⊥ then ⊥ else 𝑐 G𝜎 𝑥
• Let 𝒪 be the set of all such observations, i.e.

𝒪 = 𝑂D,F 𝜎 ∈ 𝑆𝑡𝑎𝑡𝑒, 𝑥 ∈ 𝑉𝑎𝑟 ⊆ 𝐶𝑜𝑚𝑚 → ℤH

• Proposition: − G is fully abstract w.r.t. 𝒪.
• − ! is sound: by compositionality, if 𝑐 ! = 𝑐" !, then for any

context 𝐶, 𝐶 𝑐 ! = 𝐶 𝑐" ! (induction). So 𝑂#,% 𝐶 𝑐 =
𝑂#,% 𝐶 𝑐" for any observation 𝑂#,%.

• − ! is most abstract: consider the empty context 𝐶 =⋅. If
𝑂#,% 𝑐 = 𝑂#,% 𝑐′ holds for all 𝑥 ∈ 𝑉𝑎𝑟 and 𝜎 ∈ 𝑆𝑡𝑎𝑡𝑒, we know
by definition 𝑐 ! = 𝑐" !.

Main points of denotational
semantics
• Idea: programs à mathematical objects
• Theoretical foundation: domain theory
• Poset, lub
• Predomain (cpo), domain (pointed cpo)
• Continuous functions, least fixed-point

• Compositional and abstract

More on this topic

• Denotations for 𝐧𝐞𝐰𝐯𝐚𝐫, …
• Observing termination of closed commands
• Extensions, e.g., the 𝐟𝐚𝐢𝐥 command
• …

• Please refer to Chapter 2 of Theories of
Programming Languages by Reynolds

