Denotational Semantics

Slides mostly follow
John C. Reynolds' book Theories of Programming Languages and Xinyu Feng's lecture notes

Denotational semantics

- Idea: programs \rightarrow mathematical objects
- Finding domains that represent what programs do
- Partial functions
- Games between environtment and the system
- Should be compositional
- Built out of the denotations of sub-programs
- Should be abstract
- Syntax independence, full abstraction

This class

- Formulating the denotational semantics for the simple imperative programming language (IMP)
- Basics of domain theory

Recall the syntax of IMP

(IntExp) $e::=\mathbf{n}|x| e+e|e-e| \ldots$
(BoolExp) b ::= true |false

$$
\begin{aligned}
& |e=e| e<e \\
& |\neg b| b \wedge b|b \vee b| \ldots
\end{aligned}
$$

(Comm) c ::= skip $x:=e$
$c ; c$
if b then c else c while b do c

Denotational semantics for Exps

$(\operatorname{IntExp}) e::=\mathbf{n}|x| e+e|e-e| \ldots$
(BoolExp) b ::= true |false

$$
\begin{aligned}
& |e=e| e<e \\
& |\neg b| b \wedge b|b \vee b| \ldots
\end{aligned}
$$

(State) $\sigma \in \operatorname{Var} \rightarrow \mathbb{Z}$
$\begin{array}{ll}\llbracket-\rrbracket_{I} & \in \text { IntExp } \rightarrow \text { State } \rightarrow \mathbb{Z} \\ \mathbb{I}-\rrbracket_{B} & \in \text { BoolExp } \rightarrow \text { State } \rightarrow \mathbb{B}\end{array}$

Denotational semantics for Exps 1

$(\operatorname{IntExp}) e::=\mathbf{n}|x| e+e|e-e| \ldots$
(BoolExp) b ::= true |false

$$
\begin{aligned}
& |e=e| e<e \\
& |\neg b| b \wedge b|b \vee b| \ldots
\end{aligned}
$$

(State) $\sigma \in \operatorname{Var} \rightarrow \mathbb{Z}$

$$
\begin{aligned}
& \mathbb{-} \rrbracket_{I}::=\lambda e . \lambda \sigma . n, \text { if }(e, \sigma) \rightarrow^{*}(\mathbf{n}, \sigma) \text { and }[\mathbf{n}\rfloor=n \\
& \mathbb{I} \rrbracket_{B}::=\lambda b \cdot \lambda \sigma . \begin{cases}\text { true, } & \text { if }(b, \sigma) \rightarrow^{*}(\text { true }, \sigma) \\
\text { false, } & \text { if }(b, \sigma) \rightarrow^{*}(\text { false }, \sigma)\end{cases}
\end{aligned}
$$

Denotational semantics for Exps 2

(IntExp) $e::=\mathbf{n}|x| e+e|e-e| \ldots$
(BoolExp) b ::= true |false

$$
\begin{aligned}
& |e=e| e<e \\
& |\neg b| b \wedge b|b \vee b| \ldots
\end{aligned}
$$

(State) $\sigma \in \operatorname{Var} \rightarrow \mathbb{Z}$

$$
\begin{aligned}
& \llbracket-\rrbracket_{I}::=\lambda e . \lambda \sigma . n, \text { if }(e, \sigma) \Downarrow n \\
& \llbracket-\rrbracket_{B}::=\lambda b . \lambda \sigma . \begin{cases}\text { true, } & \text { if }(b, \sigma) \Downarrow \text { true } \\
\text { false, } & \text { if }(b, \sigma) \Downarrow \text { false }\end{cases}
\end{aligned}
$$

Denotational semantics for Exps 3

(IntExp) $e::=\mathbf{n}|x| e+e|e-e| \ldots$
(BoolExp) $b::=$ true |false

$$
\begin{aligned}
& |e=e| e<e \\
& |\neg b| b \wedge b|b \vee b| \ldots
\end{aligned}
$$

(State) $\sigma \in \operatorname{Var} \rightarrow \mathbb{Z}$

$$
\begin{aligned}
& \llbracket \mathbf{n} \rrbracket_{I} \sigma::=\left\lfloor\mathbf{n} \rrbracket \quad \llbracket x \rrbracket_{I} \sigma::=\sigma(x)\right. \\
& \llbracket e_{1}+e_{2} \rrbracket_{I} \sigma::=\llbracket e_{1} \rrbracket_{I} \sigma+\llbracket e_{2} \rrbracket_{I} \sigma \quad \ldots \\
& \llbracket \operatorname{true} \rrbracket_{B} \sigma::=\text { true } \quad \llbracket \text { false } \rrbracket_{B} \sigma::=\text { false } \\
& \llbracket \neg b \rrbracket_{B} \sigma:=\text { if } \llbracket b \rrbracket_{B} \sigma \text { then } \text { false else true ... }
\end{aligned}
$$

Denotational semantics for Comm

$$
\llbracket-\rrbracket_{C} \in \text { Comm } \rightarrow \text { State } \rightarrow ?
$$

- Either
- Terminate, with a final State;
- Nonterminating, without a final state, e.g., while true do skip
- Must be partial if ? = State

Denotational semantics for Comm

$$
\llbracket-\rrbracket_{C} \in \text { Comm } \rightarrow \text { State } \rightarrow \text { State }_{\perp}
$$

- For any set S, let $S_{\perp}=S \cup\{\perp\}$ (assuming $\perp \notin S$)
- \perp, usually called "bottom", for nontermination
- The denotational semantics of Comm made total

Semantics for skip and assign.

- $\llbracket \mathbf{s k i p} \rrbracket_{C} \sigma \quad::=\sigma$
- $\llbracket x:=e \rrbracket_{C} \sigma::=\sigma\left\{x \sim \llbracket e \rrbracket_{I} \sigma\right\}$
- E.g.,

$$
\begin{aligned}
& \llbracket x:=x+\mathbf{1 0} \rrbracket_{C}\{(x, 32)\} \\
& =\{(x, 32)\}\left\{x \sim \llbracket x+\mathbf{1 0} \rrbracket_{I}\{(x, 32)\}\right\} \\
& =\{(x, 32)\}\left\{x \sim\left(\llbracket x \rrbracket_{I}\{(x, 32)\}+\llbracket \mathbf{1 0} \rrbracket_{I}\{(x, 32)\}\right)\right\} \\
& =\{(x, 32)\}\{x \sim(32+10)\} \\
& =\{(x, 32)\}\{x \sim 42\} \\
& =\{(x, 42)\}
\end{aligned}
$$

Semantics for conditionals

- \llbracket if b then c_{1} else $c_{2} \rrbracket_{C} \sigma \quad::= \begin{cases}\llbracket c_{1} \rrbracket_{C} \sigma, & \text { if } \llbracket b \rrbracket_{B} \sigma=\text { true } \\ \llbracket c_{2} \rrbracket_{C} \sigma, & \text { if } \llbracket b \rrbracket_{B} \sigma=\text { false }\end{cases}$
- E.g.,
\llbracket if $x<0$ then $x=0-x$ else skip $\rrbracket_{C}\{(x,-3)\}$
$=\llbracket x=0-x \rrbracket_{C}\{(x,-3)\} \quad$ since $\llbracket x<0 \rrbracket_{B}\{(x,-3)\}=$ true
$=\{(x,-3)\}\left\{x \sim \llbracket 0-x \rrbracket_{I}\{(x,-3)\}\right\}$
$=\{(x, 3)\}$
$\llbracket i f x<0$ then $x=0-x$ else skip $\rrbracket_{C}\{(x, 5)\}$
$=\llbracket \mathbf{s k i p} \rrbracket_{C}\{(x, 5)\}$
since $\llbracket x<0 \rrbracket_{B}\{(x, 5)\}=$ false
$=\{(x, 5)\}$

Semantics for sequential composition

$\cdot \llbracket c_{1} ; c_{2} \rrbracket_{C} \sigma \quad::= \begin{cases}\perp & \text { if } \llbracket c_{1} \rrbracket_{C} \sigma=\perp \\ \llbracket c_{2} \rrbracket_{C} \circ \llbracket c_{1} \rrbracket_{C} \sigma, & \text { otherwise }\end{cases}$

- We extend $f \in S \rightarrow T_{\perp}$ to $f_{\Perp} \in S_{\perp} \rightarrow T_{\perp}$

$$
f_{\Perp} x::=\left\{\begin{array}{c}
\perp, \text { if } x=\perp \\
f x, \text { otherwise }
\end{array}\right.
$$

- Effectively it defines a lift operator

$$
(-)_{\Perp} \in\left(S \rightarrow T_{\perp}\right) \rightarrow\left(S_{\perp} \rightarrow T_{\perp}\right)
$$

- So $\llbracket c_{1} ; c_{2} \rrbracket_{C} \sigma=\left(\llbracket c_{2} \rrbracket_{C}\right)_{\Perp}\left(\llbracket c_{1} \rrbracket_{C} \sigma\right)$

Semantics of loops

- Idea: define the meaning of while b do c as that of if b then (c; while b do c) else skip
- That is,

$$
\begin{array}{rl}
\llbracket \text { while } b & b \text { do } c \rrbracket_{C} \sigma \\
& =\llbracket \text { if } b \text { then }(c ; \text { while } b \text { do } c) \text { else skip } \rrbracket_{C} \sigma \\
& =\left\{\begin{array}{c}
\left(\llbracket \text { while } b \text { do } c \rrbracket_{C}\right)_{\Perp}\left(\llbracket c \rrbracket_{C} \sigma\right), \text { if } \llbracket b \rrbracket_{B} \sigma=\text { true } \\
\sigma
\end{array}\right.
\end{array}
$$

- Not syntax directed, not compositional

Semantics of loops

- We may view \llbracket while b do $c \rrbracket_{C}$ as a sulotion for this equation: \llbracket while b do $c \rrbracket_{C} \sigma=$

$$
\left\{\begin{array}{cl}
\left(\llbracket \text { while } b \text { do } c \rrbracket_{C}\right)_{\Perp}\left(\llbracket c \rrbracket_{C} \sigma\right), \text { if } \llbracket b \rrbracket_{B} \sigma=\text { true } \\
\sigma & \text {,otherwise }
\end{array}\right.
$$

- That is, a fixed-point of

$$
\begin{aligned}
& F::=\lambda f \in \text { State } \rightarrow \text { State }_{\perp} . \\
& \lambda \sigma \in \text { State. } \begin{cases}f_{\Perp}\left(\llbracket c \rrbracket_{C} \sigma\right), & \text { if } \llbracket b \rrbracket_{B} \sigma=\text { true } \\
\sigma & , \text { otherwise }\end{cases}
\end{aligned}
$$

Semantics of loops

- That is, a fixed-point of

$$
\begin{aligned}
F::=\lambda f & \in \text { State } \rightarrow \text { State }_{\perp} . \\
& \lambda \sigma \in \text { State. }\left\{\begin{array}{cl}
f_{\Perp}\left(\llbracket c \rrbracket_{C} \sigma\right), & \text { if } \llbracket b \rrbracket_{B} \sigma=\text { true } \\
\sigma, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

- However, not every $F \in\left(\right.$ State \rightarrow State $\left._{\perp}\right) \rightarrow\left(\right.$ State \rightarrow State $\left._{\perp}\right)$ has a fixed-point, and some may have more than one.
- Example: for any $\sigma^{\prime}, \lambda \sigma . \sigma^{\prime}$ (a constant function) is a solution for【while true do $x:=x+1 \rrbracket_{C}$
- We need to guarantee the meaning is uniquely determined by the equation.

Semantics of loops

- Intuition: the limit of approximations W_{n}
- First and least accurate approximation (0-iteration)

$$
W_{0}::=\lambda \sigma \in \text { State } . \perp
$$

- 1 iteration

$$
\begin{aligned}
W_{1}::=F W_{0} & =\lambda \sigma \in \text { State. if } \llbracket b \rrbracket_{B} \sigma \text { then }\left(W_{0}\right)_{\Perp}\left(\llbracket c \rrbracket_{C} \sigma\right) \text { else } \sigma \\
& =\lambda \sigma \in \text { State. if } \llbracket b \rrbracket_{B} \sigma \text { then } \perp \text { else } \sigma
\end{aligned}
$$

- 2 iterations
$W_{2}::=F W_{1}=\lambda \sigma \in$ State. if $\llbracket b \rrbracket_{B} \sigma$ then $\left(W_{1}\right)_{\Perp}\left(\llbracket c \rrbracket_{C} \sigma\right)$ else σ
- $\mathrm{n}+1$ iterations

$$
W_{n+1}::=F W_{n}
$$

Semantics of loops

- Intuition: the limit of finite approximations W_{n}
- First and least accurate approximation (0-iteration)

$$
W_{0}::=\lambda \sigma \in \text { State } . \perp
$$

- $\mathrm{n}+1$ iterations

$$
W_{n+1}::=F W_{n}
$$

- The limit $W::=\lim _{n \rightarrow \infty} W_{n}$
- How do we take limits in a space of functions?
- Monotonicity + bound
- An ordering \sqsubseteq such that $W_{0} \sqsubseteq W_{1} \sqsubseteq W_{2} \sqsubseteq$...
- Least upper bound of the sequence

Partially ordered sets

- A binary relation ρ on S is
- Reflexive iff $\forall x \in S . x \rho x$
- Transitive
iff $x \rho y \wedge y \rho z \Rightarrow x \rho z$
- Antisymmetric iff $x \rho y \wedge y \rho x \Rightarrow x=y$
- Symmetric iff $x \rho y \Rightarrow y \rho x$
- \subseteq is a preorder on S iff \subseteq is reflexive and transitive
- ㄷ is a partial order on S iff \subseteq is a preorder on S and antisymmetric
- A poset $S: S$ with a partial order \subseteq on S
- A discretely ordered $S: S$ with Id_{S} as a partial order

Hasse diagrams

- Picturize partial orders
- Points - elements; lines - direct predecessor
- E.g., \subseteq as the partial order on set $2^{\{a, b, c\}}$

Monotonicity and upper bound

- $f \in S \rightarrow T$ is monotone iff $x \sqsubseteq y \Rightarrow f x \sqsubseteq f y$
- y is upper bound of $X \subseteq S$ iff $\forall x \in X . x \subseteq y$

Least upper bound

- y is a least upper bound (lub) of $X \subseteq S$ iff
- y is upper bound of X, and
- $\forall z \in S . z$ is an upper bound of $X \Rightarrow y \sqsubseteq z$
- If S is a poset and $X \subseteq S$, there is at most one lub of X (denoted by $\sqcup X$)
- $\sqcup \emptyset=\perp$, the least element of S (if exists)
- Let $\mathcal{X} \subseteq \mathcal{P}(S)$ such that $\sqcup X$ exists forall $X \in \mathcal{X}$, $\sqcup\{\sqcup X \mid X \in \mathcal{X}\}=\sqcup(\mathrm{U} \mathcal{X})$
if either of these lub exists

Domains

- A chain C is a countably infinite non-decreasing sequence

$$
x_{0} \sqsubseteq x_{1} \sqsubseteq \ldots
$$

- We may also use C to represent the set of elements on the chain
- The limit of a chain C is the lub of all its elements when it exists
- A chain C is interesting if $(\sqcup C) \notin C$
- A poset D is a predomain (or complete partial order - cpo) if every chain elements in D has a limit in D
- A predomain D is a domain (or pointed cpo) if D has a least element \perp

Lifting

- D_{\perp} is a lifting of the predomain D if:
- $\perp \notin D$
- $x \sqsubseteq_{D_{\perp}} y$ iff either $x=\perp$ or $x \sqsubseteq_{D} y$
- Any set S can be viewed as a predomain with discrete partial order $\subseteq::=\operatorname{Id}_{S}$
- D is a flat domain if $D-\{\perp\}$ is discretely ordered

Continuous Functions

- If D and D^{\prime} are predomains, $f \in D \rightarrow D^{\prime}$ is a continuous function if it maps limits to limis: $f(\sqcup C)=\mathrm{b}^{\prime}\left\{f x_{i} \mid x_{i} \in C\right\}$ for every chain C in D
- Continuous functions are monotone (x 〔 $y \sqsubseteq y$...)
- Monotone functions may not be continuous
- Suppose $C=x_{0} \sqsubseteq x_{1} \sqsubseteq \cdots$ is an insteresting chain in D with a limit x, and $D^{\prime}=\{\perp, \mathrm{T}\}$ such that $\perp \sqsubseteq^{\prime} \top$
- Consider $f=\lambda y$. if $y=x$ then T else \perp

Monotone vs continuous

- A monotone function $f \in D \rightarrow D^{\prime}$ is continuous iff forall interesting chains $x_{0} \sqsubseteq x_{1} \subseteq \cdots$ we have

$$
f\left(\sqcup_{i=0}^{\infty} x_{i}\right) \subseteq \sqcup_{i=0}^{\prime \infty}\left(f x_{i}\right)
$$

- Proof.

The (pre)domain of continuous functions

- Pointwise ordering of functions in $P \rightarrow P^{\prime}$, where P^{\prime} is a predomain:

$$
f \sqsubseteq_{\rightarrow g} g::=\forall x \in P . f x \sqsubseteq_{P^{\prime}} g x
$$

- Proposition:

If P and P^{\prime} are predomains, then the set $\left[P \rightarrow P^{\prime}\right]$ of continuous functions in $P \rightarrow P^{\prime}$ with partial order $\sqsubseteq_{\rightarrow}$ is a predomain, such that for any chain $f_{0} \sqsubseteq_{\rightarrow} f_{1} \sqsubseteq_{\rightarrow} \ldots$, we have

$$
\sqcup_{i} f_{i}=\lambda x \in P . \sqcup_{i}^{\prime}\left(f_{i} x\right)
$$

If P^{\prime} is a domain, then $\left[P \rightarrow P^{\prime}\right]$ is a domain with

$$
\perp_{\rightarrow}=\lambda x \in P \cdot \perp_{P^{\prime}}
$$

Examples: continuous functions

- For predomains P, P^{\prime} and $P^{\prime \prime}$,
- If $f \in P \rightarrow P^{\prime}$ is constant, then $f \in\left[P \rightarrow P^{\prime}\right]$
- $\operatorname{Id}_{P} \in[P \rightarrow P]$
- If $f \in\left[P \rightarrow P^{\prime}\right]$ and $g \in\left[P^{\prime} \rightarrow P^{\prime \prime}\right], g \circ f \in\left[P \rightarrow P^{\prime \prime}\right]$
- If $f \in\left[P \rightarrow P^{\prime}\right],(-\circ f) \in\left[\left[P^{\prime} \rightarrow P^{\prime \prime}\right] \rightarrow\left[P \rightarrow P^{\prime \prime}\right]\right]$

Strict functions and lifting

- If D and D^{\prime} are domains, $f \in D \rightarrow D^{\prime}$ is strict if $f \perp=\perp^{\prime}$
- If P and P^{\prime} are predomains, $f \in P \rightarrow P^{\prime}$, then the strict funcion

$$
f_{\perp}::=\lambda x \in P_{\perp} . \text { if } x=\perp \text { then } \perp^{\prime} \text { else } f x
$$

is the lifting of f to $P_{\perp} \rightarrow P_{\perp^{\prime}}^{\prime}$.

- If P^{\prime} is a domain, then the strict function

$$
f_{\Perp}::=\lambda x \in P_{\perp} . \text { if } x=\perp \text { then } \perp^{\prime} \text { else } f x
$$

is the source lifting of f to $P_{\perp} \rightarrow P^{\prime}$

- If f is continuous, so are f_{\perp} and f_{\Perp}.
- $(-)_{\perp}$ and $(-)_{\Perp}$ are also continuous.

Least fixed-point

- Theorem [Kleene fixed-point theorem]: If D is a domain and $f \in[D \rightarrow \mathrm{D}]$ then $x::=\sqcup_{i=0}^{\infty}\left(f^{i} \perp\right)$ is the least fixed-point of f.
- Proof.
x is well-defined because $\perp \subseteq f \subseteq f^{2} \sqsubseteq \cdots$ is a chain.
x is a fixed-point because

$$
f x=f\left(\cup_{i=0}^{\infty}\left(f^{i} \perp\right)\right)=\sqcup_{i=0}^{\infty}\left(f\left(f^{i} \perp\right)\right)=x
$$

For any fixed-point y of f, \perp ㄷ $y \Rightarrow f \perp \subseteq f y=y$.
By induction, $\forall i \in \mathbb{N} . f^{i} \sqsubseteq y$. So y is an upper bound of the chain $\perp \subseteq f \perp \subseteq \cdots$. Since x is a lub, $x \sqsubseteq y$.

The least fixed-point operator

- Let

$$
\mathbf{Y}_{D}=\lambda f \in[D \rightarrow D] . \sqcup_{i=0}^{\infty}\left(f^{i} \perp\right)
$$

- $\forall f \in[D \rightarrow D] . \mathbf{Y}_{D} f$ is the least fixed-point of f.
- $\mathbf{Y}_{D} \in[[D \rightarrow D] \rightarrow D]$

Back to semantics of loops

- Recall \llbracket while b do $c \rrbracket_{C} \sigma=$

$$
\left\{\begin{array}{cl}
\left(\llbracket \text { while } b \text { do } c \rrbracket_{C}\right)_{\Perp}\left(\llbracket c \rrbracket_{C} \sigma\right), & \text { if } \llbracket b \rrbracket_{B} \sigma=\text { true } \\
\sigma & , \text { otherwise }
\end{array}\right.
$$

- It implies that \llbracket while b do $c \rrbracket_{C}$ is a fixed-point of $F::=\lambda f \in$ State \rightarrow State $_{\perp} . \lambda \sigma \in$ State. if $\llbracket b \rrbracket_{B} \sigma$ then $f_{\Perp}\left(\llbracket c \rrbracket_{C} \sigma\right)$ else σ
- We pick the least fixed-point

$$
\llbracket \text { while } b \text { do } c \rrbracket_{C}::=\mathbf{Y}_{\left[\text {State } \rightarrow \text { State }_{\perp}\right]} F
$$

- Coincides with our intuition based on operational semantics:

$$
W::=\lim _{n \rightarrow \infty} W_{n}=\lim _{n \rightarrow \infty} F^{n} W_{0}
$$

Abstractness of semantics

- Abstract semantics are an attempt to separate the important properties of a language (what computations can it express) from the unimportant (how exactly computations are represented).
- The more terms are considered equal by a semantics, the more abstract it is.
- A semantic function $\llbracket-\rrbracket_{1}$ is at least as abstract as $\llbracket-\rrbracket_{0}$ if

$$
\forall c, c^{\prime} . \llbracket c \rrbracket_{0}=\llbracket c^{\prime} \rrbracket_{0} \Rightarrow \llbracket c \rrbracket_{1}=\llbracket c^{\prime} \rrbracket_{1}
$$

Observation and context

- If there are other means of observing the result of a computation, a semantics may be incorrect if it equates too many terms.
- Observation: "needs of the user"
- Let O be an observation, and \mathcal{O} be a set of observations, i.e.

$$
O \in \mathcal{O} \subseteq C o m m \rightarrow \text { Outcomes }
$$

- A context C is a command with a hole []. Use \mathcal{C} for all contexts.
- A command c can be placed in the hole of C, yielding $C[c]$ (not substitution - name capture is allowed).
- E.g., $C=($ newvar $x:=1$ in [] $; y:=x)$

Soundness and full abstractness

- A semantic function $\llbracket-\rrbracket$ is sound (with respect to \mathcal{O}) iff $\forall c, c^{\prime} . \llbracket c \rrbracket=\llbracket c^{\prime} \rrbracket \Rightarrow \forall O \in \mathcal{O} . \forall C \in \mathcal{C} . O(C[c])=O\left(C\left[c^{\prime}\right]\right)$
- A semantic function 【-】 is fully abstract (with respect to \mathcal{O}) iff $\forall c, c^{\prime} . \llbracket c \rrbracket=\llbracket c^{\prime} \rrbracket \Leftrightarrow \forall O \in \mathcal{O} . \forall C \in \mathcal{C} . O(C[c])=O\left(C\left[c^{\prime}\right]\right)$
i.e. $\llbracket-\rrbracket$ is the "most abstract" sound semantics.
- Proposition: if $\llbracket-\rrbracket_{0}$ and $\llbracket-\rrbracket_{1}$ are both fully abstract semantics w.r.t. \mathcal{O}, then $\llbracket-\rrbracket_{0}=\llbracket-\rrbracket_{1}$

Full abstractness of semantis for IMP

- Let $O_{\sigma, x}::=\lambda c$. if $\llbracket c \rrbracket_{C} \sigma=\perp$ then \perp else $\left(\llbracket c \rrbracket_{C} \sigma\right) x$
- Let \mathcal{O} be the set of all such observations, i.e.

$$
\mathcal{O}=\left\{O_{\sigma, x} \mid \sigma \in \text { State, } x \in \operatorname{Var}\right\} \subseteq \operatorname{Comm} \rightarrow \mathbb{Z}_{\perp}
$$

- Proposition: $\llbracket-\rrbracket_{C}$ is fully abstract w.r.t. \mathcal{O}.
- $\llbracket-\rrbracket_{C}$ is sound: by compositionality, if $\llbracket c \rrbracket_{C}=\llbracket c^{\prime} \rrbracket_{C}$, then for any context $C, \llbracket C[c] \rrbracket_{C}=\llbracket C\left[c^{\prime}\right] \rrbracket_{C}$ (induction). So $O_{\sigma, x}(C[c])=$ $O_{\sigma, x}\left(C\left[c^{\prime}\right]\right)$ for any observation $O_{\sigma, x}$.
- $\llbracket-\rrbracket_{C}$ is most abstract: consider the empty context $C=\cdot$. If $O_{\sigma, x}(c)=O_{\sigma, x}\left(c^{\prime}\right)$ holds for all $x \in \operatorname{Var}$ and $\sigma \in$ State, we know by definition $\llbracket c \rrbracket_{C}=\llbracket c^{\prime} \rrbracket_{C}$.

Main points of denotational

 semantics- Idea: programs \rightarrow mathematical objects
- Theoretical foundation: domain theory
- Poset, lub
- Predomain (cpo), domain (pointed cpo)
- Continuous functions, least fixed-point
- Compositional and abstract

More on this topic

- Denotations for newvar, ...
- Observing termination of closed commands
- Extensions, e.g., the fail command
-...
- Please refer to Chapter 2 of Theories of Programming Languages by Reynolds

