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Slides adapted from
Art of Multicore Programming
by Herlihy and Shavit 



Overview 

• Introduction 

• Mutual Exclusion 

• Linearizability 

• Concurrent Data Structure 
– Linked-List Set 

– Lock-free Stack 

• Summary 



What is Concurrency? 

 

 

    A property of systems in which several 
processes or threads are executing at the 
same time. 

 



Moore’s Law 

Clock speed 
flattening 

sharply 

Transistor 
count still 

rising 



The Uniprocessor is Vanishing! 

memory 

cpu 



The Shared Memory Multiprocessor 
(SMP)  

cache 

Bus Bus 

shared memory 

cache cache 



Your New Desktop: The Multicore 
Processor 

(CMP)  

cache 

Bus Bus 

shared memory 

cache cache 
All on the  
same chip 

Sun 
T2000 
Niagara 



Why do we care?  

• Time no longer cures software bloat 
– The “free ride” is over 

• When you double your program’s path 
length 
– You can’t just wait 6 months 

– Your software must somehow exploit twice 
as much concurrency 

 



Traditional Scaling Process 

User code 

Traditional 
Uniprocessor  

Speedup 
1.8x 

7x 

3.6x 

Time: Moore’s law 



Multicore Scaling Process 

User code 

Multicore 

Speedup 1.8x 

7x 

3.6x 

Unfortunately, not so simple… 



Real-World Scaling Process 

1.8x 2x 2.9x 

User code 

Multicore 

Speedup 

Parallelization and Synchronization  
require great care…  



Sequential Computation 

memory 

object object 

thread 



Concurrent Computation 

memory 

object object 



Asynchrony 

• Sudden unpredictable delays 
– Cache misses (short) 

– Page faults (long) 

– Scheduling quantum used up (really long) 



Model Summary 

• Multiple threads 

 

• Single shared memory 
 

• Objects live in memory 

 

• Unpredictable asynchronous delays 

 



Multithread Programming 

• Java, C#, Pthreads 

 

• Windows Thread API 

 

• OpenMP 

 

• Intel Parallel Studio Tool Kits 



Java Thread  



Concurrency Idea 

• Challenge 
– Print primes from 1 to 1010 

• Given 
– Ten-processor multiprocessor 

– One thread per processor 

• Goal 
– Get ten-fold speedup (or close) 



Load Balancing 

• Split the work evenly 

• Each thread tests range of 109 

… 

… 109 1010 2·109 1 

P0 P1 P9 



Procedure for Thread i 

void primePrint { 
  int i = ThreadID.get(); // IDs in {0..9} 
  for (j = i*109+1, j<(i+1)*109; j++) { 
    if (isPrime(j)) 
      print(j); 
  } 
} 



Issues 

• Higher ranges have fewer primes 

• Yet larger numbers harder to test 

• Thread workloads 
– Uneven 

– Hard to predict 



Issues 

• Higher ranges have fewer primes 

• Yet larger numbers harder to test 

• Thread workloads 
– Uneven 

– Hard to predict 

• Need dynamic load balancing 



Shared Counter 

17 

18 

19 

each thread 
takes a number 



Procedure for Thread i 

int counter = new Counter(1); 
     
void primePrint { 
  long j = 0; 
  while (j < 1010) { 
    j = counter.getAndIncrement(); 
    if (isPrime(j)) 
      print(j); 
  } 
} 



Procedure for Thread i 

Counter counter = new Counter(1); 
     
void primePrint { 
  long j = 0; 
  while (j < 1010) { 
    j = counter.getAndIncrement(); 
    if (isPrime(j)) 
      print(j); 
  } 
} 

Shared counter 
object 



Where Things Reside 

cache 

Bus Bus 

cache cache 

1 

shared counter 

shared  
memory 

void primePrint { 
  int i = 
ThreadID.get(); // IDs 
in {0..9} 
  for (j = i*109+1, 
j<(i+1)*109; j++) { 
    if (isPrime(j)) 
      print(j); 
  } 
} 

code 

Local  
variables 



Counter Implementation 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    return value++; 
  } 
} 



Counter Implementation 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    return value++; 
  } 
} 



What It Means 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    return value++; 
  } 
} 



What It Means 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    return value++; 
  } 
} 

 temp  = value; 

 value = value + 1; 

 return temp; 



time 

Not so good… 

Value… 1 

read  
1 

read  
1 

write  
2 

read  
2 

write  
3 

write  
2 

2 3 2 



Is this problem inherent? 

If we could only glue reads and writes…  

read 

write read 

write 



Challenge 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    temp  = value; 
    value = temp + 1; 
    return temp; 
  } 
} 



Challenge 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    temp  = value; 
    value = temp + 1; 
    return temp; 
  } 
} 

Make these steps 
atomic (indivisible) 



Hardware Solution 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    temp  = value; 
    value = temp + 1; 
    return temp; 
  } 
} ReadModifyWrite() 

instruction 



An Aside: Java™ 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    synchronized { 
      temp  = value; 
      value = temp + 1; 
      } 
    return temp; 
  } 
} 



An Aside: Java™ 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    synchronized { 
      temp  = value; 
      value = temp + 1; 
      } 
    return temp; 
  } 
} 

Synchronized block 



An Aside: Java™ 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    synchronized { 
      temp  = value; 
      value = temp + 1; 
      } 
    return temp; 
  } 
} 

Mutual Exclusion 



Mutual Exclusion 

 

    The problem of ensuring that no two 
processes or threads can be in their 
critical section at the same time. 



time 

• An event  a0 of thread A is 
– Instantaneous 

– No simultaneous events (break ties) 

a0 

Events 



time 

• A thread A is (formally) a sequence 
a0, a1, ... of events  
– “Trace” model 

– Notation: a0  a1 indicates order 

a0 

Threads 

a1 a2 … 



• Assign to shared variable 

• Assign to local variable 

• Invoke method 

• Return from method 

• Lots of other things … 

 

Example Thread Events 



Threads are State Machines 

Events are 
transitions 

a0 

a1 a2 

a3 



States 

• Thread State 
– Program counter 

– Local variables 

• System state 
– Object fields (shared variables) 

– Union of thread states 



time 

• Thread A 
 

 

Concurrency 



time 

time 

• Thread A 
 

 

• Thread B 

Concurrency 



time 

Interleavings 

 

• Events of two or more threads 
– Interleaved 

– Not necessarily independent (why?) 



time 

• An interval  A0 =(a0,a1) is 
– Time between events a0 and a1  

a0 a1 

Intervals 

A0 



time 

Intervals may Overlap 

a0 a1 A0 

b0 b1 B0 



time 

Intervals may be Disjoint 

a0 a1 A0 

b0 b1 B0 



time 

Precedence 

a0 a1 A0 

b0 b1 B0 

Interval A0 precedes interval B0 



Precedence 

• Notation: A0  B0 

• Formally, 
– End event of A0 before start event of B0 

– Also called “happens before” or 
“precedes”  



Precedence Ordering 

• Never true that A  A  

• If A B then not true that B A 

• If A B & B C then A C 

• Funny thing: A B & B A might both 
be false!  



Partial Orders 
(you may know this already) 

• Irreflexive: 
– Never true that A  A  

• Antisymmetric: 
– If A  B then not true that B  A  

• Transitive: 
– If A  B & B  C then A  C 



Total Orders 
(you may know this already) 

• Also 
– Irreflexive 

– Antisymmetric 

– Transitive 

• Except that for every distinct A, B, 
– Either A  B or B  A  



Implementing a Counter 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    temp  = value; 
    value = temp + 1; 
    return temp; 
  } 
} 

Make these steps 
indivisible using 

locks 



Locks (Mutual Exclusion) 

public interface Lock { 
 
 public void lock(); 
 
 public void unlock(); 
} 



Locks (Mutual Exclusion) 

public interface Lock { 
 
 

 public void lock(); 
 
 public void unlock(); 
} 

acquire lock 



Locks (Mutual Exclusion) 

public interface Lock { 
 
 public void lock(); 
 
 public void unlock(); 
} 

release lock 

acquire lock 



Using Locks 

public class Counter { 
  private long value; 
  private Lock lock; 
  public long getAndIncrement() { 
   lock.lock(); 
   try { 
    int temp = value; 
    value = value + 1; 
   } finally { 
     lock.unlock(); 
   } 
   return temp; 

  }} 



Using Locks 

public class Counter { 
  private long value; 
  private Lock lock; 
  public long getAndIncrement() { 
   lock.lock(); 
   try { 
    int temp = value; 
    value = value + 1; 
   } finally { 
     lock.unlock(); 
   } 
   return temp; 
  }} 

acquire Lock 



Using Locks 

public class Counter { 
  private long value; 
  private Lock lock; 
  public long getAndIncrement() { 
   lock.lock(); 
   try { 
    int temp = value; 
    value = value + 1; 
   } finally { 
     lock.unlock(); 
   } 
   return temp; 

  }} 

Release lock 
(no matter what) 



Using Locks 

public class Counter { 
  private long value; 
  private Lock lock; 
  public long getAndIncrement() { 
   lock.lock(); 
   try { 
    int temp = value; 
    value = value + 1; 
   } finally { 
     lock.unlock(); 
   } 
   return temp; 

  }} 

Critical 
section 



Mutual Exclusion 

• Let CSi
k      be thread i’s k-th critical 

section execution 

   



Mutual Exclusion 

• Let CSi
k      be thread i’s k-th critical 

section execution 

• And CSj
m      be thread j’s m-th critical 

section execution 

   



Mutual Exclusion 

• Let CSi
k      be thread i’s k-th critical 

section execution 

• And CSj
m      be j’s m-th execution 

• Then either 
–            or 

   



Mutual Exclusion 

• Let CSi
k      be thread i’s k-th critical 

section execution 

• And CSj
m      be j’s m-th execution 

• Then either 
–            or 

CSi
k  CSj

m 

   



Mutual Exclusion 

• Let CSi
k      be thread i’s k-th critical 

section execution 

• And CSj
m      be j’s m-th execution 

• Then either 
–            or 

CSi
k  CSj

m 

   

CSj
m  CSi

k 



Deadlock-Free 

• If some thread calls lock() 
– And never returns 

– Then other threads must complete lock() 
and unlock() calls infinitely often 

• System as a whole makes progress 
– Even if individuals starve 



Starvation-Free 

• If some thread calls lock() 
– It will eventually return 

• Individual threads make progress 



class … implements Lock { 
  … 
  // thread-local index, 0 or 1 
  public void lock() { 
    int i = ThreadID.get(); 
    int j = 1 - i;  
  … 

  } 
} 

Two-Thread Conventions 



class … implements Lock { 
  … 
  // thread-local index, 0 or 1 
  public void lock() { 
    int i = ThreadID.get(); 
    int j = 1 - i;  
  … 

  }   
} 

Two-Thread Conventions 

Henceforth: i is current 
thread, j is other thread 



LockOne 

class LockOne implements Lock { 
private boolean[] flag =  
                        new boolean[2]; 
public void lock() { 
  flag[i] = true; 
  while (flag[j]) {} 
 } 



LockOne 

class LockOne implements Lock { 
private boolean[] flag =  
                        new boolean[2];  
public void lock() { 
  flag[i] = true; 
  while (flag[j]) {} 
 } 

Set my flag 



class LockOne implements Lock { 
private boolean[] flag =  
                        new boolean[2];  
public void lock() { 
  flag[i] = true; 
  while (flag[j]) {} 
 } 

LockOne 

Wait for other 
flag to go false 

Set my flag 



• Assume CSA
j overlaps CSB

k 

• Consider each thread's last (j-th 
and k-th) read and write in the 
lock() method before entering  

• Derive a contradiction 

 

LockOne Satisfies Mutual 
Exclusion 



• writeA(flag[A]=true)  
readA(flag[B]==false) CSA 

 

• writeB(flag[B]=true)  
readB(flag[A]==false)  CSB 

From the Code 

class LockOne implements Lock { 
…  
public void lock() { 
  flag[i] = true; 
  while (flag[j]) {} 
 } 



• readA(flag[B]==false)  
writeB(flag[B]=true) 

 

• readB(flag[A]==false)  
writeA(flag[B]=true) 

From the Assumption 



• Assumptions: 
– readA(flag[B]==false)  writeB(flag[B]=true) 

– readB(flag[A]==false)  writeA(flag[A]=true) 

• From the code 
– writeA(flag[A]=true)  readA(flag[B]==false) 

– writeB(flag[B]=true)  readB(flag[A]==false) 

 

Combining 



• Assumptions: 
– readA(flag[B]==false)  writeB(flag[B]=true) 

– readB(flag[A]==false)  writeA(flag[A]=true) 

• From the code 
– writeA(flag[A]=true)  readA(flag[B]==false) 

– writeB(flag[B]=true)  readB(flag[A]==false) 

 

Combining 



• Assumptions: 
– readA(flag[B]==false)  writeB(flag[B]=true) 

– readB(flag[A]==false)  writeA(flag[A]=true) 

• From the code 
– writeA(flag[A]=true)  readA(flag[B]==false) 

– writeB(flag[B]=true)  readB(flag[A]==false) 

 

Combining 



• Assumptions: 
– readA(flag[B]==false)  writeB(flag[B]=true) 

– readB(flag[A]==false)  writeA(flag[A]=true) 

• From the code 
– writeA(flag[A]=true)  readA(flag[B]==false) 

– writeB(flag[B]=true)  readB(flag[A]==false) 

 

Combining 



• Assumptions: 
– readA(flag[B]==false)  writeB(flag[B]=true) 

– readB(flag[A]==false)  writeA(flag[A]=true) 

• From the code 
– writeA(flag[A]=true)  readA(flag[B]==false) 

– writeB(flag[B]=true)  readB(flag[A]==false) 

 

Combining 



• Assumptions: 
– readA(flag[B]==false)  writeB(flag[B]=true) 

– readB(flag[A]==false)  writeA(flag[A]=true) 

• From the code 
– writeA(flag[A]=true)  readA(flag[B]==false) 

– writeB(flag[B]=true)  readB(flag[A]==false) 

 

Combining 



Cycle! 



Deadlock Freedom 

• LockOne Fails deadlock-freedom 
– Concurrent execution can deadlock 

 

 

– Sequential executions OK 

  flag[i] = true;    flag[j] = true; 
  while (flag[j]){}  while (flag[i]){} 



LockTwo 
public class LockTwo implements Lock { 
 private int victim; 
 public void lock() { 
  victim = i; 
  while (victim == i) {};  
 } 
 
 public void unlock() {} 
} 



LockTwo 
public class LockTwo implements Lock { 
 private int victim; 
 public void lock() { 
  victim = i; 
  while (victim == i) {};  
 } 
 
 public void unlock() {} 
} 

Let other go 
first 



LockTwo 
public class LockTwo implements Lock { 
 private int victim; 
 public void lock() { 
 victim = i; 
  while (victim == i) {};  
 } 
 
 public void unlock() {} 
} 

Wait for 
permission 



LockTwo 
public class Lock2 implements Lock { 
 private int victim; 
 public void lock() { 
  victim = i; 
  while (victim == i) {};  
 } 
 
 public void unlock() {} 
} 

Nothing to do 



public void LockTwo() { 
  victim = i; 
  while (victim == i) {};  
 } 

LockTwo Claims 

• Satisfies mutual exclusion 
– If thread i in CS 

– Then victim == j 

– Cannot be both 0 and 1 

• Not deadlock free 
– Sequential execution deadlocks 

– Concurrent execution does not 



Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
} 
public void unlock() { 
 flag[i] = false; 
} 



Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
} 
public void unlock() { 
 flag[i] = false; 
} 

Announce I’m 
interested 



Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
} 
public void unlock() { 
 flag[i] = false; 
} 

Announce I’m 
interested 

Defer to other 



Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
} 
public void unlock() { 
 flag[i] = false; 
} 

Announce I’m 
interested 

Defer to other 

Wait while other 
interested & I’m 

the victim 



Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
 } 
public void unlock() { 
 flag[i] = false; 
} 

Announce I’m 
interested 

Defer to other 

Wait while other 
interested & I’m 

the victim 
No longer 
interested 



public void lock() { 
  flag[i] = true;  
  victim  = i; 
  while (flag[j] && victim == i) {}; 

Mutual Exclusion 

• If thread 1 in 
critical section, 
– flag[1]=true,  

– victim = 0 

• If thread 0 in 
critical section, 
– flag[0]=true,  

– victim = 1 

Cannot both be true 



Deadlock Free 

• Thread blocked  
– only at while loop 

– only if it is the victim 

• One or the other must not be the victim 

public void lock() { 
  … 
  while (flag[j] && victim == i) {}; 



Starvation Free 

 

• Thread i blocked 
only if j repeatedly 
re-enters so that 

  flag[j] == true and 
victim == i 

• When j re-enters 
– it sets victim to j. 
– So i gets in 

public void lock() { 
  flag[i] = true;  
  victim    = i; 
  while (flag[j] && victim == i) {}; 
} 
 
public void unlock() { 
  flag[i] = false;   
} 



Other Lock Algorithms 

• The Filter Algorithm for n Threads 

• Bakery Algorithm 

 
Theorem: At least N MRSW (multi-reader/single-
writer) registers are needed to solve deadlock-free 
mutual exclusion.  

 

N registers like Flag[]… 

 



FIFO Queue: Enqueue Method 

q.enq( ) 



FIFO Queue: Dequeue Method 

q.deq()/ 



     A Lock-Based Queue 

class LockBasedQueue<T> {   
  int head, tail;   
  T[] items;   
  Lock lock;   
  public LockBasedQueue(int capacity) {     
    head = 0; tail = 0;     
    lock = new ReentrantLock();     
    items = (T[]) new Object[capacity];   
} 



     A Lock-Based Queue 

class LockBasedQueue<T> {   
  int head, tail;   
  T[] items;   
  Lock lock;   
  public LockBasedQueue(int capacity) {     
    head = 0; tail = 0;     
    lock = new ReentrantLock();     
    items = (T[]) new Object[capacity];   
} 

0 1 

capacity-1 
2 

head tail 

y z 

Queue fields 
protected by 
single shared lock 



     A Lock-Based Queue 

class LockBasedQueue<T> {   
  int head, tail;   
  T[] items;   
  Lock lock;   
  public LockBasedQueue(int capacity) {     
    head = 0; tail = 0;     
    lock = new ReentrantLock();     
    items = (T[]) new Object[capacity];   
} 

0 1 

capacity-1 
2 

head tail 

y z 

Initially head = tail 



Implementation: Deq 

public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

0 1 

capacity-1 
2 

head tail 

y z 



Implementation: Deq 

public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

Method calls   
mutually exclusive 

0 1 

capacity-1 
2 

head tail 

y z 



Implementation: Deq 

public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

If queue empty 
throw exception 

0 1 

capacity-1 
2 

head tail 

y z 



Implementation: Deq 

public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

Queue not empty: 
remove item and update  

head 

0 1 

capacity-1 
2 

head tail 

y z 



Implementation: Deq 

public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

Return result 

0 1 

capacity-1 
2 

head tail 

y z 



Implementation: Deq 

public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  Release lock no matter 

what! 

0 1 

capacity-1 
2 

head tail 

y z 



Implementation: Deq 

public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  



Now consider the following 
implementation 

• The same thing without mutual 
exclusion 

• For simplicity, only two threads  
– One thread enq only 

– The other deq only 
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Wait-free 2-Thread Queue 
public class WaitFreeQueue { 
 
  int head = 0, tail = 0;  
  items = (T[]) new Object[capacity];     
 
  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}} 



Wait-free 2-Thread Queue 
public class LockFreeQueue { 
 
  int head = 0, tail = 0;  
  items = (T[]) new Object[capacity];     
 
  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}} 

0 1 

capacity-1 
2 

head tail 

y z 



Lock-free 2-Thread Queue 
public class LockFreeQueue { 
 
  int head = 0, tail = 0;  
  items = (T[])new Object[capacity];     
 
  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}} 

0 1 

capacity-1 
2 

head tail 

y z 

Queue is updated without a lock! 



Defining concurrent queue  
implementations 

• Need a way to specify a concurrent 
queue object 

• Need a way to prove that an 
algorithm implements  the object’s 
specification 

• Lets talk about object 
specifications … 



Sequential Objects 

• Each object has a state 
– Usually given by a set of fields 

– Queue example: sequence of items 

• Each object has a set of methods 
– Only way to manipulate state 

– Queue example: enq and deq methods 



Sequential Specifications 
• If (precondition)  

– the object is in such-and-such a state 

– before you call the method, 

• Then (postcondition) 

– the method will return a particular value 

– or throw a particular exception. 

• and (postcondition, con’t) 

– the object will be in some other state 

– when the method returns,  



Pre and PostConditions for 
Dequeue 

• Precondition: 
– Queue is non-empty 

• Postcondition: 
– Returns first item in queue 

• Postcondition: 
– Removes first item in queue 



Pre and PostConditions for 
Dequeue 

• Precondition: 
– Queue is empty 

• Postcondition: 
– Throws Empty exception 

• Postcondition: 
– Queue state unchanged 



What About Concurrent 
Specifications ? 

• Methods?  

• Documentation? 

• Adding new methods?  



Methods Take Time 

time time 



Methods Take Time 

time 

invocation 
12:00 

q.enq(...) 

time 
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time 
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12:00 
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time 
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Methods Take Time 

time 

Method call 

invocation 
12:00 

q.enq(...) 

time 

void 

response 
12:01 



Sequential vs Concurrent 

• Sequential 
– Methods take time? Who knew? 

• Concurrent 
– Method call is not an event 

– Method call is an interval. 

 



time 

Concurrent Methods Take 
Overlapping Time 

time 



time 

Concurrent Methods Take 
Overlapping Time 

time 
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Concurrent Methods Take 
Overlapping Time 

time 

Method call 

Method call 



time 

Concurrent Methods Take 
Overlapping Time 

time 

Method call Method call 

Method call 



Sequential vs Concurrent 

• Sequential: 
– Object needs meaningful state only 

between method calls 

• Concurrent 
– Because method calls overlap, object 

might never be between method calls 



Sequential vs Concurrent 

• Sequential: 
– Each method described in isolation 

• Concurrent 
– Must characterize all possible 

interactions with concurrent calls  
• What if two enqs overlap? 

• Two deqs? enq and deq? … 



Sequential vs Concurrent 

• Sequential: 
– Can add new methods without affecting 

older methods 

• Concurrent: 
– Everything can potentially interact with 

everything else 



Sequential vs Concurrent 

• Sequential: 
– Can add new methods without affecting 

older methods 

• Concurrent: 
– Everything can potentially interact with 

everything else 



Intuitively… 

public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  



Intuitively… 

public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

All modifications  
of queue are done  
mutually exclusive 



time 

Intuitively 

q.deq 

q.enq 

 enq  deq 

   lock() unlock() 

lock() unlock() 
Behavior is 
“Sequential” 

enq 

deq 

Lets capture the idea of describing  
the concurrent via the sequential  



Is it really about the object? 

• Each method should 
– “take effect” 

– Instantaneously 

– Between invocation and response events 

• Object is correct if this “sequential” 
behavior is correct 

• A linearizable object: one all of whose 
possible executions are linearizable 



Example 

time time 
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time 

q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 
q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 

time 
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time 

q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 
q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 

time 
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time 

q.enq(x) 
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time 

q.enq(x) q.deq(y) 



Example 

time 

q.enq(x) 

q.enq(y) 
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time 

q.enq(x) 
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q.deq(y) q.enq(x) 

q.enq(y) 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) 

q.deq(x) 

time 



q.enq(x) 

q.enq(y) 

q.deq(y) 

q.deq(x) 

Comme ci Example 

time 

Comme ça 



Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(0) 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(1) write(1) 

write(2) 



Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(2) write(1) 

write(2) 



Talking About Executions 

• Why? 
– Can’t we specify the linearization point 

of each operation without describing an 
execution? 

• Not Always 
– In some cases, linearization point 

depends on the execution 



Formal Model of Executions 

• Define precisely what we mean 
– Ambiguity is bad when intuition is weak 

• Allow reasoning 
– Formal 

– But mostly informal 

 



Split Method Calls into Two 
Events 

• Invocation 
– method name & args 
– q.enq(x) 

• Response 
– result or exception 
– q.enq(x) returns void 
– q.deq()  returns x 
– q.deq()   throws  empty 
 



Invocation Notation 

A q.enq(x) 



Invocation Notation 

A q.enq(x) 

thread 
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Invocation Notation 
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Invocation Notation 

A q.enq(x) 

thread 

object 

method 

arguments 



Response Notation 

A q: void 



Response Notation 

A q: void 

thread 



Response Notation 

A q: void 

thread result 



Response Notation 

A q: void 

thread 

object 

result 



History - Describing an 
Execution 

A q.enq(3) 
A q:void 
A q.enq(5) 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

Sequence of 
invocations and 

responses 

H = 



Definition 

• Invocation & response match if 
 

A q.enq(3) 

A q:void 

Thread 
names agree 

Object names 
agree 

Method call 



Object Projections 

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
 
 

H = 



Object Projections 

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
 
 

H|q = 



Thread Projections 

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
 
 

H = 



Thread Projections 

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
 
 

H|B = 



Complete Subhistory 

A q.enq(3) 
A q:void 
A q.enq(5) 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

An invocation is 
pending if it has no 
matching respnse 

H = 



Complete Subhistory 

A q.enq(3) 
A q:void 
A q.enq(5) 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

May or may not have 
taken effect 

H = 



Complete Subhistory 

A q.enq(3) 
A q:void 
A q.enq(5) 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

discard pending 
invocations 

H = 



Complete Subhistory 

A q.enq(3) 
A q:void 
  
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

Complete(H) = 



Sequential Histories 

A q.enq(3) 
A q:void 
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B q.deq() 
B q:3 
A q:enq(5) 
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match 
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Sequential Histories 

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
A q:enq(5) 

match 

match 

match 

Final pending 
invocation OK 



Well-Formed Histories 

H= 
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Well-Formed Histories 
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Well-Formed Histories 

H= 

A q.enq(3) 
B p.enq(4) 
B p:void 
B q.deq() 
A q:void 
B q:3 

H|B= 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

A q.enq(3) 
A q:void 

H|A= 

Per-thread projections 
sequential 



Equivalent Histories 

H= 

A q.enq(3) 
B p.enq(4) 
B p:void 
B q.deq() 
A q:void 
B q:3 

Threads see the same 
thing in both 

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

G= 

H|A = G|A 
H|B = G|B 



Sequential Specifications 

• A sequential specification is some way 
of telling whether a 
– Single-thread, single-object history 

– Is legal 

• For example: 
– Pre and post-conditions 

– But plenty of other techniques exist … 



Legal Histories 

• A sequential (multi-object) history H 
is legal if 
– For every object x 

– H|x is in the sequential spec for x 



Precedence 

A q.enq(3) 
B p.enq(4) 
B p.void 
A q:void 
B q.deq() 
B q:3 

A method call precedes 
another if response event 
precedes invocation event 

Method call Method call 



Non-Precedence 

A q.enq(3) 
B p.enq(4) 
B p.void 
B q.deq() 
A q:void 
B q:3 

Some method calls 
overlap one another 

Method call 

Method call 



Notation 

• Given  
– History H 
– method executions m0 and m1 in H  

• We say m0 H m1, if 

– m0 precedes m1 

• Relation m0 H m1 is a 
– Partial order  
– Total order if H is sequential 

 
 

m0 m1 



Linearizability 

• History H is linearizable if it can be 
extended to G by 
– Appending zero or more responses to 

pending invocations 
– Discarding other pending invocations 

• So that G is equivalent to 
– Legal sequential history S  
– where G  S 



What is G  S 
 

time 

a 

b 

time S 

c G 

G = {ac,bc} 

S = {ab,ac,bc} 



Remarks 

• Some pending invocations 
– Took effect, so keep them 

– Discard the rest 

• Condition G  S 
– Means that S respects “real-time order” 

of G 

 



A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
B q:enq(6) 

Example 

time 

B.q.enq(4) 

A. q.enq(3) 

B.q.deq(4) B. q.enq(6) 
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Example 

Complete this pending 
invocation 

time 

B.q.enq(4) B.q.deq(3) B. q.enq(6) 

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
B q:enq(6) 

A. q.enq(3) 



Example 

Complete this pending 
invocation 

time 

B.q.enq(4) B.q.deq(4) B. q.enq(6) 

A.q.enq(3) 

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
B q:enq(6) 
A q:void 



Example 

time 

B.q.enq(4) B.q.deq(4) B. q.enq(6) 

A.q.enq(3) 

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
B q:enq(6) 
A q:void 

discard this one 
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Example 

time 

B.q.enq(4) B.q.deq(4) 

A.q.enq(3) 

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
 
A q:void 

discard this one 



A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
A q:void 

Example 

time 

B.q.enq(4) B.q.deq(4) 

A.q.enq(3) 



A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
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Example 

time 

B q.enq(4) 
B q:void 
A q.enq(3) 
A q:void 
B q.deq() 
B q:4 

B.q.enq(4) B.q.deq(4) 

A.q.enq(3) 



B.q.enq(4) B.q.deq(4) 

A.q.enq(3) 

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
A q:void 

Example 

time 

B q.enq(4) 
B q:void 
A q.enq(3) 
A q:void 
B q.deq() 
B q:4 

Equivalent sequential history 



Reasoning About  
Linearizability: Locking  

public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

0 1 
capacity-1 

2 

head tail 

y z 



Reasoning About  
Linearizability: Locking  

public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

Linearization points 
are when locks are 

released  
 



228 

More Reasoning: Wait-free 
0 1 

capacity-1 
2 

head tail 

y z 

public class WaitFreeQueue { 
 
  int head = 0, tail = 0;  
  items = (T[]) new Object[capacity];     
 
  public void enq(Item x) { 
    if (tail-head == capacity) throw  
         new FullException(); 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     if (tail == head) throw  
         new EmptyException(); 
     Item item = items[head % capacity]; head++; 
     return item; 
}} 

0 1 
capacity-1 

2 

head tail 

y z 



public class WaitFreeQueue { 
 
  int head = 0, tail = 0;  
  items = (T[]) new Object[capacity];     
 
  public void enq(Item x) { 
    if (tail-head == capacity) throw  
         new FullException(); 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     if (tail == head) throw  
         new EmptyException(); 
     Item item = items[head % capacity]; head++; 
     return item; 
}} 

More Reasoning: Wait-free 

0 1 
capacity-1 

2 

head tail 

y z 
Linearization order is 
order head and tail 

fields modified 



Linearizability: Summary 

• Powerful specification tool for shared 
objects 

• Allows us to capture the notion of 
objects being “atomic” 

• Don’t leave home without it 

 



Ordered linked list 
implementation of a set 

a b c -∞ +∞ 

 

 



a b c 

Sorted with Sentinel nodes 
(min & max possible keys) 

-∞ 

+∞ 

Defining the linked list 



Defining concurrent methods 
properties 

 
 
 

• Invariant: 
– Property that always holds. 

– Established because 

– True when object is created. 

– Truth preserved by each method 
• Each step of each method. 

 

 



Defining concurrent methods 
properties 

 
 
 

• Rep-Invariant: 
– The invariant on our concrete 

Representation = on the list. 

– Preserved by methods. 

– Relied on by methods. 

– Allows us to reason about each method in 
isolation without considering how they 
interact. 

 

 

 

 



Defining concurrent methods 
properties 

 
 
 

• Our Rep-invariant: 
– Sentinel nodes 

• tail reachable from head.  

– Sorted 

– No duplicates 

 

 

• Depends on the implementation. 



Defining concurrent methods 
properties 

 
 
 

• Abstraction Map:  

• S(List) = 
– { x | there exists a such that 

• a reachable from head and 

• a.item  = x 

– } 
 

• Depends on the implementation. 



Abstract Data Types 

• Example: 

 
– S(                                        ) = {a,b} a b 

a b 

• Concrete representation: 
 

 

• Abstract Type: 
– {a, b} 



Defining concurrent methods 
properties 

 
 
 

 

• Wait-free: Every call to the function 
finishes in a finite number of steps. 

 

Supposing the Scheduler is fair: 

• Starvation-free: every thread calling the 
method eventually returns.  

 

 



Algorithms 

 
 
 

• Next: going throw each algorithm. 
• 1. Describing the algorithm. 

• 2. Explaining why every step of the algorithm is 
needed.  

• 3. Code review. 

• 4. Analyzing each method properties. 

• 5. Advantages / Disadvantages. 

• 6. Presenting running times for the 
implementation of the algorithm. 

• + Example of proving correctness for Remove(x) 
in FineGrained.  
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0.Sequential List Based Set  

a c d 

a b c 

Add()  

Remove()  



a c d 

b 

a b c 

Add()  

Remove()  

0.Sequential List Based Set  



1.Course Grained 

a b d 

1. Describing the algorithm: 

 
• Most common implementation 

today. 
 

• Add(x) / Remove(x) / Contains(x):  
- Lock the entire list then perform the operation. 



1.Course Grained 

a b d 

c 

• Most common implementation today 
 

1. Describing the algorithm: 

 

• All methods perform operations on the list while 
holding the lock, so the execution is essentially 
sequential. 

 



3. Code review: 

 Add: 

 public boolean add(T item) {  

    Node pred, curr; 

    int key = item.hashCode(); 

    lock.lock(); 

    try { 

      pred = head; 

      curr = pred.next; 

      while (curr.key < key) { 

        pred = curr; 

        curr = curr.next; 

      } 

      if (key == curr.key) { 

        return false; 

      } else { 

        Node node = new Node(item); 

        node.next = curr; 

        pred.next = node;         

        return true; 

      } 

    } finally { 

      lock.unlock(); 

    } 

  } 

Finding the place to add the item 

Adding the item if it wasn’t already in the list 

1.Course Grained 
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3. Code review: 

 Remove: 

 public boolean remove(T item) { 

    Node pred, curr; 

    int key = item.hashCode(); 

    lock.lock(); 

    try { 

      pred = this.head; 

      curr = pred.next; 

      while (curr.key < key) { 

        pred = curr; 

        curr = curr.next; 

      } 

      if (key == curr.key) { 

        pred.next = curr.next; 

        return true; 

      } else { 

        return false;          

      } 

    } finally {                

      lock.unlock(); 

    } 

  } 

Finding the item 

Removing the item 

1.Course Grained 
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3. Code review: 

 Contains: 

 public boolean contains(T item) { 

    Node pred, curr; 

    int key = item.hashCode(); 

    lock.lock(); 

    try { 

      pred = head; 

      curr = pred.next; 

      while (curr.key < key) { 

        pred = curr; 

        curr = curr.next; 

      } 

      return (key == curr.key); 

    } finally {lock.unlock(); 

    } 

  } 

Finding the item 

Returning true if found 

1.Course Grained 



4. Methods properties: 

 
• The implementation inherits its progress 

conditions from those of the Lock, and so 
assuming fair Scheduler:  

  - If the Lock implementation is Starvation 
free  

   Every thread will eventually get the lock and 
 eventually the call to the function will return.
   

• So our implementation of Insert, Remove and 
Contains is Starvation-free 

   

1.Course Grained 



5. Advantages / Disadvantages: 

 
Advantages: 

 - Simple. 

 - Obviously correct. 

Disadvantages: 

 - High Contention.  

 - Bottleneck! 

 

1.Course Grained 



6. Running times: 

 

1.Course Grained 

• The tests were run on Aries – Supports 32 
running threads. UltraSPARC T1 - Sun 
Fire T2000. 

• Total of 200000 operations. 

• 10% adds, 2% removes, 88% contains – normal 
work load percentages on a set. 

• Each time the list was initialized with 100 
elements. 

• One run with a max of 20000 items in the list. 
Another with only 2000. 



6. Running times: 

 

1.Course Grained 

Speed up

0

5

10

15

20
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30

4 8 12 16 20 24 28 32

No. Threads

S
e
c
o

n
d

s 2000 max
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2.Fine Grained 

1. Describing the algorithm: 

 

• Split object into pieces 
– Each piece has own lock. 

– Methods that work on disjoint pieces 
need not exclude each other. 



2.Fine Grained 

  
• Add(x) / Remove(x) / Contains(x): 

– Go throw the list, lock each node and release 
only after the lock of the next element has 
been acquired.  

– Once you have reached the right point of the 
list perform the Add / Remove / Contains 
operation. 

 

1. Describing the algorithm: 

 



a b c d 

remove(b) 

2.Fine Grained 

1. Describing the algorithm: illustrated Remove. 

 

 



a b c d 

remove(b) 

2.Fine Grained 

1. Describing the algorithm: illustrated Remove. 

 

 



a b c d 

remove(b) 

2.Fine Grained 

1. Describing the algorithm: illustrated Remove. 

 

 



a b c d 

remove(b) 

2.Fine Grained 

1. Describing the algorithm: illustrated Remove. 

 

 



a b c d 

remove(b) 

2.Fine Grained 

1. Describing the algorithm: illustrated Remove. 

 

 



a c d 

remove(b) 

2.Fine Grained 

1. Describing the algorithm: illustrated Remove. 

 

 



Why do we need  
to always hold 2  
locks? 

2.Fine Grained 

2. Explaining why every step is needed.  

 

 

 



a b c d 

remove(c) 
remove(b) 

2.Fine Grained 

Concurrent removes 

 

  

2. Explaining why every step is needed.  

 

 

 



a b c d 

remove(b) 
remove(c) 

2.Fine Grained 

Concurrent removes 

 

  

2. Explaining why every step is needed.  

 

 

 



a b c d 

remove(b) 
remove(c) 

2.Fine Grained 

Concurrent removes 

 

  

2. Explaining why every step is needed.  

 

 

 



a b c d 

remove(b) 
remove(c) 

2.Fine Grained 

Concurrent removes 

 

  

2. Explaining why every step is needed.  

 

 

 



a b c d 

remove(b) 
remove(c) 

2.Fine Grained 

Concurrent removes 

 

  

2. Explaining why every step is needed.  

 

 

 



a b c d 

remove(b) 
remove(c) 

2.Fine Grained 

Concurrent removes 

 

  

2. Explaining why every step is needed.  

 

 

 



Concurrent Removes 

a b c d 

remove(b) 
remove(c) 

2. Explaining why every step is needed.  

 

 

 



Concurrent Removes 

a b c d 

remove(b) 
remove(c) 

2. Explaining why every step is needed.  

 

 

 



a c d 

remove(b) 
remove(c) 

2.Fine Grained 

Concurrent removes 

 

  

2. Explaining why every step is needed.  

 

 

 



a c d 

Bad news, C 
not removed remove(b) 

remove(c) 

2.Fine Grained 

Concurrent removes 

 

  

2. Explaining why every step is needed.  

 

 

 



a b c d 

remove(b) 
remove(c) 

Concurrent removes 

Now with 2 locks. 

 

  

2.Fine Grained 

2. Explaining why every step is needed.  

 

 

 



a b c d 

remove(b) 
remove(c) 

Concurrent removes 

Now with 2 locks. 

 

  

2.Fine Grained 

2. Explaining why every step is needed.  

 

 

 



a b c d 

remove(b) 
remove(c) 

Concurrent removes 

Now with 2 locks. 

 

  

2.Fine Grained 

2. Explaining why every step is needed.  

 

 

 



a b c d 

remove(b) 
remove(c) 

Concurrent removes 

Now with 2 locks. 

 

  

2.Fine Grained 

2. Explaining why every step is needed.  

 

 

 



a b c d 

remove(b) 
remove(c) 

Concurrent removes 

Now with 2 locks. 

 

  

2.Fine Grained 

2. Explaining why every step is needed.  

 

 

 



a b c d 

remove(b) 
remove(c) 

Concurrent removes 

Now with 2 locks. 

 

  

2.Fine Grained 

2. Explaining why every step is needed.  

 

 

 



a b c d 

remove(b) 
remove(c) 

Concurrent removes 

Now with 2 locks. 

 

  

2.Fine Grained 

2. Explaining why every step is needed.  

 

 

 



a b c d 

remove(b) 
remove(c) 

Concurrent removes 

Now with 2 locks. 

 

  

2.Fine Grained 

2. Explaining why every step is needed.  

 

 

 



a b c d 

Must 
acquire  

Lock of b 

remove(c) 

Concurrent removes 

Now with 2 locks. 

 

  

2.Fine Grained 

2. Explaining why every step is needed.  

 

 

 



a b c d 

Cannot 
acquire 

lock of b 

remove(c) 

Concurrent removes 

Now with 2 locks. 

 

  

2.Fine Grained 

2. Explaining why every step is needed.  

 

 

 



a b c d 

Wait! 
remove(c) 

Concurrent removes 

Now with 2 locks. 

 

  

2.Fine Grained 

2. Explaining why every step is needed.  

 

 

 



a b d 

Proceed 
to 

remove(b) 

Concurrent removes 

Now with 2 locks. 

 

  

2.Fine Grained 

2. Explaining why every step is needed.  

 

 

 



a b d 

remove(b) 

Concurrent removes 

Now with 2 locks. 

 

  

2.Fine Grained 

2. Explaining why every step is needed.  

 

 

 



a b d 

remove(b) 

Concurrent removes 

Now with 2 locks. 

 

  

2.Fine Grained 

2. Explaining why every step is needed.  

 

 

 



a d 

remove(b) 

Concurrent removes 

Now with 2 locks. 

 

  

2.Fine Grained 

2. Explaining why every step is needed.  

 

 

 



2.Fine Grained 

• Conclusion: 

 

• Now that we hold 2 locks for Remove / Add / 
Contains. If a node is locked : 
– It can’t be removed and so does the next node in the 

list. 

– No new node can be added before it and after it. 

 

   

2. Explaining why every step is needed.  
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Remove method

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {
…

} finally {
curr.unlock();
pred.unlock();
}}
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Remove method

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {
…

} finally {
curr.unlock();
pred.unlock();
}}

Key used to order node
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Remove method

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {
…

} finally {
currNode.unlock();
predNode.unlock();
}}

Predecessor and current nodes
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Remove method

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {
…

} finally {
curr.unlock();
pred.unlock();
}}

Make sure 
locks released



Art of Multiprocessor Programming 110

Remove method

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {
…

} finally {
curr.unlock();
pred.unlock();
}}

Everything else
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Remove method

try {
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
…
} finally { … }
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Remove method

try {
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
…
} finally { … }

lock pred == head
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Remove method

try {
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
…
} finally { … }

Lock current
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Remove method

try {
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
…
} finally { … }

Traversing list
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Remove: searching

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;
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Remove: searching

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Search key range
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Remove: searching

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

At start of each loop: 
curr and pred locked
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Remove: searching

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;If item found, remove node
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Remove: searching

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;If node found, remove it
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Remove: searching

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Unlock predecessor
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Remove: searching

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Only one node locked!
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Remove: searching

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

demote current
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Remove: searching

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = currNode;
curr = curr.next;
curr.lock();
}
return false;

Find and lock new current
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Remove: searching
while (curr.key <= key) {

if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = currNode;
curr = curr.next;
curr.lock();
}
return false;

Lock invariant restored
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Remove: searching

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Otherwise, not present



3. Code review: 

 Add: 

 
public boolean add(T item) { 

    int key = item.hashCode(); 

    head.lock(); 

    Node pred = head; 

    try { 

      Node curr = pred.next; 

      curr.lock(); 

      try { 

        while (curr.key < key) { 

          pred.unlock(); 

          pred = curr; 

          curr = curr.next; 

          curr.lock(); 

        } 

         

Finding the place to 
add the item: 

2.Fine Grained 

if (curr.key == key) { 

          return false; 

        } 

        Node newNode = new Node(item); 

        newNode.next = curr; 

        pred.next = newNode; 

        return true; 

      } finally { 

        curr.unlock(); 

      } 

    } finally { 

      pred.unlock(); 

    } 

  }         

Adding the item: 

Continued: 



3. Code review: 

 Contains: 

 
 public boolean contains(T item) { 

    Node pred = null, curr = null; 

    int key = item.hashCode(); 

    head.lock(); 

    try { 

      pred = head; 

      curr = pred.next; 

      curr.lock(); 

      try { 

        while (curr.key < key) { 

          pred.unlock(); 

          pred = curr; 

          curr = curr.next; 

          curr.lock(); 

        } 

2.Fine Grained 

return (curr.key == key); 

      } finally { 

        curr.unlock(); 

      } 

    } finally { 

      pred.unlock(); 

    } 

  } 

Return true iff found 

Continued: 

Finding the place to 
add the item: 



Proving correctness for Remove(x) function: 

 

2.Fine Grained 

• So how do we prove correctness of a method in 
a concurrent environment? 

 

1. Decide on a Rep-Invariant.    Done!  

2. Decide on an Abstraction map.   Done! 

3. Defining the operations:  
 Remove(x): If x in the set => x won’t be in the set and return 

true. 

 If x isn’t in the set => don’t change the set and return false. 
       Done! 



Proving correctness for Remove(x) function: 

 

2.Fine Grained 

4. Proving that each function keeps the Rep-
Invariant: 

 1. Tail reachable from head. 

 2. Sorted. 

 3. No duplicates.  

 1. The newly created empty list obviously keeps 
the Rep-invariant. 

 2. Easy to see from the code that for each 
function if the Rep-invariant was kept before 
the call it will still hold after it.    
Done! 

   



Proving correctness for Remove(x) function: 

 

2.Fine Grained 

5. Split the function to all possible run time 
outcomes. 

In our case:  

 1. Successful remove.  (x was in the list) 

 2. Failed remove.  (x wasn’t in the 
list) 

        Done! 

6. Proving for each possibility. 

 We will start with a successful remove. (failed 
remove is not much different) 

 

   



Proving correctness for Remove(x) function: 

 

2.Fine Grained 

6. Deciding on a linearization point for a successful 
remove. 
 Reminder: Linearization point – a point in time that we 

can say the function has happened in a running 
execution. 

   

 We will set the Linearization point to after the 
second lock was acquired.   Done! 

   

successful remove. 
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while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Why remove() is linearizable

•pred reachable from head
•curr is pred.next
•So curr.item is in the set
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while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Why remove() is linearizable

Linearization point if
item is present
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while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Why remove() is linearizable

Node locked, so no other 
thread can remove it ….
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while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Why remove() is linearizable

Item not present
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while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Why remove() is linearizable

•pred reachable from head
•curr is pred.next
•pred.key < key 
•key <  curr.key
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while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Why remove() is linearizable

Linearization point



Proving correctness for Remove(x) function: 

 

2.Fine Grained 

7. Now that the linearization point is set we need 
to prove that: 

  7.1. Before the linearization point the set 
 contained x. 

  7.2. After it the set won’t contain x. 

   

successful remove. 
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Proving correctness for Remove(x) function: 

 

2.Fine Grained 

7.1. Before the linearization point the set contained 
x. 

 1. Since we proved the Rep-Invariant holds 
then pred=z is accessible from the head.  

 2. Since z,x are locked. No other concurrent 
call can remove them.  

 3. Since curr=x is pointed to by pred then x is 
also accessible from the head. 

y z x w 

successful remove. 
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Proving correctness for Remove(x) function: 

 

2.Fine Grained 

– S(                                        ) = {a,b} 
 

y z x w 

7.1. Before the linearization point the set contained 
x. Now by the Abstraction map definition: 

 

 

 since x is reachable from the head => x is in 
the set!      Done! 

a b 

successful remove. 

  



Proving correctness for Remove(x) function: 

 

2.Fine Grained 

7.1. After it the set won’t contain x. 

 1. after the linearization point: pred.next = 
curr.next; 

 Curr=x won’t be pointed to by pred=z and so won’t be 
accessible from head. 

y z x w 

successful remove. 

  



Proving correctness for Remove(x) function: 

 

2.Fine Grained 

7.1. After it the set won’t contain x. 

 2. Now by the Abstraction map definition: 

  since x is not reachable from the head => x is 
 not in the set!     Done! 

y z x w 

successful remove. 

  



Proving correctness for Remove(x) function: 

 

2.Fine Grained 

    
• In conclusion: 

– For every possible run time execution for Remove(x) we 
found a linearization point that holds the remove 
function specification in the set using the Abstraction 
map while holding the Rep-Invariant. 

       Done! 

 

   



4. Methods properties: 

 

2.Fine Grained 

• Assuming fair scheduler. If the Lock 
implementation is Starvation free:  

 Every thread will eventually get the lock and 
since   all methods move in the same direction in 
the list there won’t be deadlock and eventually 
the call to the function will return.   

 

• So our implementation of Insert, Remove and 
Contains is Starvation-free. 

 



5. Advantages / Disadvantages: 

 
Advantages: 

 - Better than coarse-grained lock 

 Threads can traverse in parallel. 

Disadvantages: 

 - Long chain of acquire/release. 

 - Inefficient. 

2.Fine Grained 



6. Running times: 

 Speed up
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2.Fine Grained 



6. Running times: 
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2.Fine Grained 



6. Running times: 

 Speed up

max of 20000 items
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2.Fine Grained 



3. Optimistic 

1. Describing the algorithm: 

 Add(x) / Remove (x) / Contains(x): 

1. Find nodes without locking 

2. Lock nodes 

3. Check that everything is OK = Validation. 

 3.1 Check that pred is still reachable from head. 

 3.2 Check that pred still points to curr. 

4. If validation passed => do the operation.  



b d e a 

add(c) Aha! 

3. Optimistic 

1. Describing the algorithm: 

 
• Example of add(c): 

Finding without 
locking 



b d e a 

add(c) 

1. Describing the algorithm: 

 Locking 
• Example of add(c): 

3. Optimistic 



b d e a 

add(c) 

1. Describing the algorithm: 

 Validation 1 
• Example of add(c): 

3. Optimistic 



b d e a 

add(c) 

1. Describing the algorithm: 

 Validation 1 
• Example of add(c): 

3. Optimistic 



b d e a 

add(c) 

1. Describing the algorithm: 

 Validation 2 
• Example of add(c): 

Yes. b is still 
reachable from 
head. 

3. Optimistic 



b d e a 

add(c) 

1. Describing the algorithm: 

 Validation 2 
• Example of add(c): 

Yes. b still points to d. 

3. Optimistic 



b d e a 

add(c) 

c 

3. Optimistic 

1. Describing the algorithm: 

 Add c. 
• Example of add(c): 



Why do we need  
to Validate? 

3. Optimistic 

2. Explaining why every step is needed.  

 

 

 



3. Optimistic 

• First: Why do we need to validate that pred is 
accessible from head? 

 

 

• Thread A Adds(c).  

• After thread A found b, before A locks. Another 
thread removes b. 

2. Explaining why every step is needed.  

 

 

 

b d e a 



b d e a 

add(c) Aha! 

3. Optimistic 

• Adds(c). 
Finding without locking 

2. Explaining why every step is needed.  

 

 

 



d e a 

add(c) 

3. Optimistic 

b 

Another thread removed 
b 

• Adds(c). 

2. Explaining why every step is needed.  

 

 

 



d e a 

add(c) 

3. Optimistic 

b 

Now A locks b and d 

• Adds(c). 

2. Explaining why every step is needed.  

 

 

 



d e a 

add(c) 

3. Optimistic 

b 

And adds c 

c 

• Adds(c). 

2. Explaining why every step is needed.  

 

 

 



d e a 

3. Optimistic 

b 

Now frees the locks. 

But c isn’t added! 

c 

• Adds(c). 

2. Explaining why every step is needed.  

 

 

 



3. Optimistic 

• Second: Why do we need to validate that pred 
Still points to curr? 

 

 

• Thread A removes(d).  

• then thread A found b, before A locks. Another 
thread adds(c). 

 

2. Explaining why every step is needed.  

 

 

 

b d e a 



b d e a 

add(c) Aha! 

3. Optimistic 

• Removes(d) 
Finding without locking 

2. Explaining why every step is needed.  

 

 

 



d e a 

add(c) 

3. Optimistic 

b 

Another thread Adds(c) 

c 

• Removes(d) 

2. Explaining why every step is needed.  

 

 

 



d e a 

add(c) 

3. Optimistic 

b 

Now A locks. 

c 

• Removes(d) 

2. Explaining why every step is needed.  

 

 

 



d e a 

add(c) 

3. Optimistic 

b 

pred.next = curr.next; 

• Removes(d) 

c 

2. Explaining why every step is needed.  

 

 

 



3. Optimistic 

Instead c and d were 
deleted! 

• Removes(d) 

d e a b 

c 

Now frees the locks. 

2. Explaining why every step is needed.  
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What Else Could Go Wrong?

b d ea

add(c) Aha!
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What Else Coould Go Wrong?

b d ea

add(c)
add(b’)
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What Else Coould Go Wrong?

b d ea

add(c)
add(b’)b’
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What Else Could Go Wrong?

b d ea

add(c)
b’
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What Else Could Go Wrong?

b d ea

add(c)

c



3. Optimistic 

• Do notice that threads might traverse deleted 
nodes. May cause problems to our Rep-Invariant. 

 

• Careful not to recycle to the lists nodes that 
were deleted while threads are in a middle of an 
operation. 

• With a garbage collection language like java – ok. 

• For C – you need to solve this manually. 

Important comment.  
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Correctness

• If
– Nodes b and c both locked
– Node b still accessible
– Node c still successor to b

• Then
– Neither will be deleted
– OK to delete and return true
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Unsuccessful Remove

a b d e

remove(c
)

Aha!
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Validate (1)

a b d e

Yes, b still 
reachable 
from head

remove(c)
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Validate (2)

a b d e

remove(c) Yes, b still 
points to d
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OK Computer

a b d e

remove(c) return false
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Correctness

• If
– Nodes b and d both locked
– Node b still accessible
– Node d still successor to b

• Then
– Neither will be deleted
– No thread can add c after b
– OK to return false
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Validation
private boolean
validate(Node pred,

Node curry) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;
}
return false;
}
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private boolean
validate(Node pred,

Node curr) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;
}
return false;

}

Validation

Predecessor & 
current nodes
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private boolean
validate(Node pred,

Node curr) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;
}
return false;

}

Validation

Begin at the 
beginning
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private boolean
validate(Node pred,

Node curr) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;
}
return false;

}

Validation

Search range of keys
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private boolean
validate(Node pred,

Node curr) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;
}
return false;

}

Validation

Predecessor reachable
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private boolean
validate(Node pred,

Node curr) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;
}
return false;

}

Validation

Is current node next?
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private boolean
validate(Node pred,

Node curr) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;
}
return false;

}

Validation
Otherwise move on
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private boolean
validate(Node pred,

Node curr) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;
}
return false;

}

Validation
Predecessor not reachable
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Remove: searching
public boolean remove(Item item) {
int key = item.hashCode();
retry: while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)

break;
pred = curr;
curr = curr.next;
} … 
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public boolean remove(Item item) {
int key = item.hashCode();
retry: while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;
pred = curr;
curr = curr.next;
} … 

Remove: searching

Search key
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public boolean remove(Item item) {
int key = item.hashCode();
retry: while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;
pred = curr;
curr = curr.next;
} … 

Remove: searching

Retry on synchronization conflict
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public boolean remove(Item item) {
int key = item.hashCode();
retry: while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;
pred = curr;
curr = curr.next;
} … 

Remove: searching

Examine predecessor and current nodes
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public boolean remove(Item item) {
int key = item.hashCode();
retry: while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;
pred = curr;
curr = curr.next;
} … 

Remove: searching

Search by key
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public boolean remove(Item item) {
int key = item.hashCode();
retry: while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;
pred = curr;
curr = curr.next;
} … 

Remove: searching

Stop if we find item



Art of Multiprocessor Programming 178

public boolean remove(Item item) {
int key = item.hashCode();
retry: while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;
pred = curr;
curr = curr.next;
} … 

Remove: searching

Move along
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Remove Method
try {
pred.lock(); curr.lock();
if (validate(pred,curr) {
if (curr.item == item) {
pred.next = curr.next;
return true;
} else {
return false;
}}} finally {

pred.unlock();
curr.unlock();

}}}
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try {
pred.lock(); curr.lock();
if (validate(pred,curr) {
if (curr.item == item) {
pred.next = curr.next;
return true;
} else {
return false;
}}} finally {

pred.unlock();
curr.unlock();

}}}

Remove Method

Always unlock
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try {
pred.lock(); curr.lock();
if (validate(pred,curr) {
if (curr.item == item) {
pred.next = curr.next;
return true;
} else {
return false;
}}} finally {

pred.unlock();
curr.unlock();

}}}

Remove Method

Lock both nodes
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try {
pred.lock(); curr.lock();
if (validate(pred,curr) {
if (curr.item == item) {
pred.next = curr.next;
return true;
} else {
return false;
}}} finally {

pred.unlock();
curr.unlock();

}}}

Remove Method

Check for synchronization 
conflicts
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try {
pred.lock(); curr.lock();
if (validate(pred,curr) {
if (curr.item == item) {
pred.next = curr.next;
return true;
} else {
return false;
}}} finally {

pred.unlock();
curr.unlock();

}}}

Remove Method

target found, 
remove node
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try {
pred.lock(); curr.lock();
if (validate(pred,curr) {
if (curr.item == item) {
pred.next = curr.next;
return true;
} else {
return false;
}}} finally {

pred.unlock();
curr.unlock();

}}}

Remove Method

target not found



3. Code review: 

 Add: 

 
public boolean add(T item) { 

    int key = item.hashCode(); 

    while (true) { 

      Entry pred = this.head; 

      Entry curr = pred.next; 

      while (curr.key <= key) { 

        pred = curr; curr = curr.next; 

      } 

      pred.lock(); curr.lock(); 

       

Search the list from 
the beginning each 

time, until validation 
succeeds 

try { 

        if (validate(pred, curr)) { 

          if (curr.key == key) {  

            return false; 

          } else {                

            Entry entry = new Entry(item); 

            entry.next = curr; 

            pred.next = entry; 

            return true; 

          } 

        } 

      } finally {                 

        pred.unlock(); curr.unlock(); 

      } 

    } 

  } 

 

If validation succeeds 
Attempt Add 

Continued: 

3. Optimistic 



3. Code review: 

 Contains: 

 
 public boolean contains(T item) { 

    int key = item.hashCode(); 

    while (true) { 

      Entry pred = this.head;  

      Entry curr = pred.next; 

      while (curr.key < key) { 

        pred = curr; curr = curr.next; 

      } 

      try { 

        pred.lock(); curr.lock(); 

        if (validate(pred, curr)) { 

          return (curr.key == key); 

        } 

      } finally {                

        pred.unlock(); curr.unlock(); 

      } 

    } 

  } 

Search the list from 
the beginning each 

time, until validation 
succeeds 

If validation succeeds 
Return the result 

3. Optimistic 



4. Methods properties: 

 
• Assuming fair scheduler. Even if all the lock 

implementations are Starvation free. We will 
show a scenario in which the methods Remove / 
Add / Contains do not return. 

 

• And so our implementation won’t be starvation 
free. 

 

   

3. Optimistic 



4. Methods properties: 

 
• Assuming Thread A operation is Remove(d) / 

Add(c) / Contains(c). 

 

• If the following sequence of operations will 
happen: 

 

   

3. Optimistic 

d e a b 



4. Methods properties: 

 
The sequence: 

• 1. Thread A will find b.  

• 2. Thread B will remove b. 

• 3. The validation of thread A will fail. 

 

   

3. Optimistic 

The thread call to the 
function won’t return! 

d e a b 

• 4. Thread C will add b.  

  now go to 1. 

 

   



5. Advantages / Disadvantages: 

 
Advantages: 

   - Limited hot-spots 

• Targets of add(), remove(), contains(). 

• No contention on traversals. 

- Much less lock acquisition/releases. 

– Better concurrency. 

Disadvantages: 

 - Need to traverse list twice! 

 - Contains() method acquires locks. 

3.Optimistic 



5. Advantages / Disadvantages: 

 

3.Optimistic 

• Optimistic is effective if: 

– The cost of scanning twice without locks is less 
than the cost of scanning once with locks 

 

• Drawback: 

– Contains() acquires locks. Normally, about 90% 
of the calls are contains. 
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6. Running times: 
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4. Lazy 

1. Describing the algorithm: 

 Validate: 

– Pred is not marked as deleted. 

– Curr is not marked as deleted. 

– Pred points to curr. 
 



4. Lazy 

1. Describing the algorithm: 

 Remove(x): 

• Find the node to remove. 

• Lock pred and curr. 

• Validate. (New validation!) 

• Logical delete 

– Marks current node as removed (new!). 

• Physical delete 

– Redirects predecessor’s next. 



4. Lazy 

1. Describing the algorithm: 

 Add(x): 

• Find the node to remove. 

• Lock pred and curr. 

• Validate. (New validation!) 

• Physical add 

– The same as Optimistic. 



4. Lazy 

1. Describing the algorithm: 

 Contains(x): 

• Find the node to remove without locking! 

• Return true if found the node and it isn’t marked 
as deleted. 

 

• No locks! 



a a b c d 

4. Lazy 

1. Describing the algorithm: 

• Remove(c): 



c a a b d 

Present in list 

4. Lazy 

1. Describing the algorithm: 

• Remove(c): 

1. Find the node 



c a a b d 

Present in list 

4. Lazy 

1. Describing the algorithm: 

• Remove(c): 

2. lock 



c a a b d 

Present in list 

4. Lazy 

1. Describing the algorithm: 

• Remove(c): 

3. Validate 



c a a b d 

Set as marked 

4. Lazy 

1. Describing the algorithm: 

• Remove(c): 

4. Logically delete 



a a b c d 

Pred.next = curr.next 

4. Lazy 

1. Describing the algorithm: 

• Remove(c): 

5. Physically delete 



a a b d 

Cleaned 

4. Lazy 

1. Describing the algorithm: 

• Remove(c): 

5. Physically delete 



4. Lazy 

1. Describing the algorithm: 

 

 

Given the Lazy Synchronization algorithm. 

 

 

What else should we change? 



4. Lazy 

1. Describing the algorithm: 

• New Abstraction map! 

 

• S(head) = 

– { x | there exists node a such that 

• a reachable from head and 

• a.item  = x and 

• a is unmarked 

– } 



Why do we need  
to Validate? 

2. Explaining why every step is needed.  

 

 

 

4. Lazy 



• First: Why do we need to validate that pred Still 
points to curr? 

 

• The same as in Optimistic: 

• Thread A removes(d).  

• Then thread A found b, before A locks. Another 
thread adds(c).  
– c and d will be removed instead of just d. 

 

2. Explaining why every step is needed.  

 

 

 

4. Lazy 

b d e a 



• Second: Why do we need to validate that pred 
and curr aren’t marked logically removed? 

• To make sure a thread hasn’t removed them 
between our find and our lock. 

• The same scenario we showed for validating that 
pred is still accessible from head holds here: 
– After thread A found b, before A locks. Another 

thread removes b. (our operation won’t take place). 

 

2. Explaining why every step is needed.  

 

 

 

4. Lazy 

d e b a 



3. Code review: 

 Add: 

 
 public boolean add(T item) { 

    int key = item.hashCode(); 

    while (true) { 

      Node pred = this.head; 

      Node curr = head.next; 

      while (curr.key < key) { 

        pred = curr; curr = curr.next; 

      } 

      pred.lock(); 

      try { 

        curr.lock(); 

Search the list from 
the beginning each 

time, until validation 
succeeds 

        try { 

          if (validate(pred, curr)) { 

            if (curr.key == key) {  

              return false; 

            } else {                

              Node Node = new Node(item); 

              Node.next = curr; 

              pred.next = Node; 

              return true; 

            } 

          } 

        } finally {  

          curr.unlock(); 

        } 

      } finally {  

        pred.unlock(); 

      } 

    } 

  } 

If validation succeeds 
Attempt Add 

Continued: 

4. Lazy 



3. Code review: 

 Remove: 

 
 public boolean remove(T item) { 

    int key = item.hashCode(); 

    while (true) { 

      Node pred = this.head; 

      Node curr = head.next; 

      while (curr.key < key) { 

        pred = curr; curr = curr.next; 

      } 

      pred.lock(); 

      try { 

        curr.lock(); 

        try { 

Search the list from 
the beginning each 

time, until validation 
succeeds 

         try{ 

          if (validate(pred, curr)) { 

            if (curr.key != key) {     

              return false; 

            } else {                   

              curr.marked = true;      

              pred.next = curr.next;   

              return true; 

            } 

          } 

        } finally {                    

          curr.unlock(); 

        } 

      } finally {                      

        pred.unlock(); 

      } 

    } 

  } 

Validation 

Continued: 

4. Lazy 

Logically remove 

Physically remove 



3. Code review: 

 Contains: 

 
  public boolean contains(T item) { 

    int key = item.hashCode(); 

    Node curr = this.head; 

    while (curr.key < key) 

      curr = curr.next; 

    return curr.key == key && !curr.marked; 

  } 

Check if its there 
and not marked 

4. Lazy 

No Lock! 



4. Methods properties: 

 
Remove and Add: 

• Assuming fair scheduler. Even if all the lock 
implementations are Starvation free. The same 
scenario we showed for optimistic holds here. 

• (only here the validation will fail because the 
node will be marked and not because it can’t be 
reached from head) 

 

• And so our implementation won’t be starvation 
free.    

4. Lazy 



4. Methods properties: 

 
But… Contains: 

• Contains does not lock! 

• In fact it isn’t dependent on other threads to 
work. 

• And so… Contains is Wait-free.    

• Do notice that other threads can’t increase the 
list forever while the thread is in contains 
because we have a maximum size to the list 
(<tail). 

4. Lazy 



5. Advantages / Disadvantages: 

 
• Advantages: 

– Contains is Wait-free. Usually 90% of the calls! 

– Validation doesn’t rescan the list. 
 

• Drawbacks: 

– Failure to validate restarts the function call. 

– Add and Remove use locks. 

 

Lock-free implementation 

4. Lazy 



6. Running times: 

 Speed up

0

2

4

6

8

10

4 8 12 16 20 24 28 32

No. Threads

S
e
c
o

n
d

s 2000 max
items in list

20000 max
items in list

4. Lazy 



6. Running times: 
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Optimistic lock-free 
Concurrency 

Pessimistic Optimistic 

     lock x; 

       x++; 

     unlock x; 

    int t; 

    do { 

             t = x; 

    } while  (!CAS(&x, t, t+1)) 

CAS(&x,a,b) =  if *x = a then *x = b return true else return false   
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Reminder: Lock-Free Data 
Structures

• No matter what …
– Guarantees minimal progress in any 

execution
– i.e. Some thread will always complete a 

method call
– Even if others halt at malicious times
– Implies that implementation can’t use locks
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Lock-free Lists

• Next logical step
– Wait-free contains()
– lock-free add() and remove()

• Use only compareAndSet()
– What could go wrong?
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a 0 0 0a b c 0e1c

Logical Removal

Physical RemovalUse CAS to verify pointer 
is correct 

Not enough! 

Lock-free Lists
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Problem…

a 0 0 0a b c 0e1c

Logical Removal

Physical Removal
0d

Node added
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The Solution: Combine Bit and 
Pointer

a 0 0 0a b c 0e1c

Logical Removal =
Set Mark Bit

Physical
Removal
CAS

0d

Mark-Bit and Pointer
are CASed together
(AtomicMarkableReference) 

Fail CAS: Node not 
added after logical  
Removal
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Solution

• Use AtomicMarkableReference
• Atomically

– Swing reference and
– Update flag 

• Remove in two steps
– Set mark bit in next field
– Redirect predecessor’s pointer
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Marking a Node

• AtomicMarkableReference class
– Java.util.concurrent.atomic package

address F

mark bit

Reference
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Extracting Reference & Mark

Public Object get(boolean[] marked); 
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Extracting Reference & Mark

Public Object get(boolean[] marked);

Returns 
reference

Returns mark at 
array index 0!
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Extracting Mark Only

public boolean isMarked(); 

Value of 
mark
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Changing State

Public boolean compareAndSet(          
Object expectedRef,
Object updateRef,
boolean expectedMark,
boolean updateMark); 
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Changing State

Public boolean compareAndSet(
Object expectedRef,
Object updateRef,
boolean expectedMark,
boolean updateMark);

If this is the current 
reference …

And this is the 
current mark …
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Changing State

Public boolean compareAndSet(          
Object expectedRef,
Object updateRef,
boolean expectedMark,
boolean updateMark); 

…then change to this 
new reference …

… and this new 
mark
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Changing State

public boolean attemptMark(            
Object expectedRef,
boolean updateMark); 
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Changing State

public boolean attemptMark(
Object expectedRef,
boolean updateMark);

If this is the current 
reference …



Art of Multiprocessor Programming 242

Changing State

public boolean attemptMark(            
Object expectedRef,
boolean updateMark); 

.. then change to 
this new mark.



bCAS
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Removing a Node

a c d

remove 
c
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Removing a Node

a b d

remove 
b

remove 
c

c

failed

CAS CAS
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Removing a Node

a b d

remove 
b

remove 
c

c
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Removing a Node

a d

remove 
b

remove 
c
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Traversing the List

• Q: what do you do when you find a 
“logically” deleted node in your path?

• A: finish the job.
– CAS the predecessor’s next field
– Proceed (repeat as needed)



Art of Multiprocessor Programming 248

Lock-Free Traversal
(only Add and Remove)

a b c d
CAS

Uh-oh

pred currpred curr
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The Window Class

class Window {
public Node pred;
public Node curr;
Window(Node pred, Node curr) {
this.pred = pred; this.curr = curr;

}
}
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The Window Class

class Window {
public Node pred;
public Node curr;
Window(Node pred, Node curr) {
this.pred = pred; this.curr = curr;

}
}

A container for pred 
and current values
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Using the Find Method

Window window = find(head, key);
Node pred = window.pred;
curr = window.curr; 
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Using the Find Method

Window window = find(head, key);
Node pred = window.pred;
curr = window.curr;

Find returns window
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Using the Find Method

Window window = find(head, key);
Node pred = window.pred;
curr = window.curr; 

Extract pred and curr
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The Find Method

Window window = find(item);

At some instant, 

pred curr succ

item or …
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The Find Method

Window window = find(item);

At some instant, 

pred
curr= null

succ

item not in list 
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Remove
public boolean remove(T item) {
Boolean snip; 
while (true) {
Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {

return false;
} else {
Node succ = curr.next.getReference();
snip = curr.next.compareAndSet(succ, succ, false

true);
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false, false);

return true;
}}}
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Remove
public boolean remove(T item) {
Boolean snip; 
while (true) {
Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {

return false;
} else {
Node succ = curr.next.getReference();
snip = curr.next.compareAndSet (succ, succ, false, 

true);
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false, false);

return true;
}}} Keep trying 
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Remove
public boolean remove(T item) {
Boolean snip; 
while (true) {
Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {

return false;
} else {
Node succ = curr.next.getReference();
snip = curr.next.compareAndSet (succ, succ, false, 

true);
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false, false);

return true;
}}} Find neighbors
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Remove
public boolean remove(T item) {
Boolean snip; 
while (true) {
Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {

return false;
} else {
Node succ = curr.next.getReference();
snip = curr.next.compareAndSet(succ, succ, false, 

true);
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false, false);

return true;
}}} She’s not there … 
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Remove
public boolean remove(T item) {
Boolean snip; 
while (true) {
Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {

return false;
} else {
Node succ = curr.next.getReference();
snip = curr.next.compareAndSet(succ, succ, false, 

true);
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false, false);

return true;
}}}

Try to mark node as deleted 
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Remove
public boolean remove(T item) {
Boolean snip; 
while (true) {
Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {

return false;
} else {
Node succ = curr.next.getReference();
snip = curr.next.compareAndSet(succ, succ, false, 

true);
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false, false);

return true;
}}}

If it doesn’t work, 
just retry, if it 

does, job 
essentially done 
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Remove
public boolean remove(T item) {
Boolean snip; 
while (true) {
Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {

return false;
} else {
Node succ = curr.next.getReference();
snip = curr.next.compareAndSet(succ, succ, false, 

true);
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false, false);

return true;
}}}

Try to advance reference
(if we don’t succeed, someone else did or will).

a
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Add
public boolean add(T item) {
boolean splice;
while (true) {

Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key == key) {

return false;
} else {
Node node = new Node(item);
node.next = new AtomicMarkableRef(curr, false);
if (pred.next.compareAndSet(curr, node, false, 

false)) {return true;}
}}}
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Add
public boolean add(T item) {
boolean splice;
while (true) {

Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key == key) {

return false;
} else {
Node node = new Node(item);
node.next = new AtomicMarkableRef(curr, false);
if (pred.next.compareAndSet(curr, node, false, 

false)) {return true;}
}}} Item already there.



Art of Multiprocessor Programming 265

Add
public boolean add(T item) {
boolean splice;
while (true) {

Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key == key) {

return false;
} else {
Node node = new Node(item);
node.next = new AtomicMarkableRef(curr, false);
if (pred.next.compareAndSet(curr, node, false, 

false)) {return true;}
}}}

create new node
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Add
public boolean add(T item) {
boolean splice;
while (true) {

Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key == key) {

return false;
} else {
Node node = new Node(item);
node.next = new AtomicMarkableRef(curr, false);
if (pred.next.compareAndSet(curr, node, false, 

false)) {return true;}
}}}

Install new node, 
else retry loop
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Wait-free Contains

public boolean contains(T item) {
boolean marked; 
int key = item.hashCode();
Node curr = this.head;
while (curr.key < key)

curr = curr.next;
Node succ = curr.next.get(marked);
return (curr.key == key && !marked[0])

}
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Wait-free Contains

public boolean contains(T item) {
boolean marked; 
int key = item.hashCode();
Node curr = this.head;
while (curr.key < key)

curr = curr.next;
Node succ = curr.next.get(marked);
return (curr.key == key && !marked[0])

}

Only diff is that we 
get and check 

marked 
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Lock-free Find
public Window find(Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
retry: while (true) {

pred = head;
curr = pred.next.getReference(); 
while (true) {
succ = curr.next.get(marked); 
while (marked[0]) {
…
}
if (curr.key >= key)

return new Window(pred, curr);
pred = curr;
curr = succ; 

}
}}



Art of Multiprocessor Programming 270

Lock-free Find
public Window find(Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
retry: while (true) {

pred = head;
curr = pred.next.getReference(); 
while (true) {
succ = curr.next.get(marked); 
while (marked[0]) {
…
}
if (curr.key >= key)

return new Window(pred, curr);
pred = curr;
curr = succ; 

}
}}

If list changes 
while traversed, 

start over
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public Window find(Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
retry: while (true) {

pred = head;
curr = pred.next.getReference();
while (true) {
succ = curr.next.get(marked); 
while (marked[0]) {
…
}
if (curr.key >= key)

return new Window(pred, curr);
pred = curr;
curr = succ; 

}
}}

Lock-free Find
Start looking from head
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public Window find(Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
retry: while (true) {

pred = head;
curr = pred.next.getReference(); 
while (true) {
succ = curr.next.get(marked); 
while (marked[0]) {
…
}
if (curr.key >= key)

return new Window(pred, curr);
pred = curr;
curr = succ; 

}
}}

Lock-free Find

Move down the list
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public Window find(Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
retry: while (true) {

pred = head;
curr = pred.next.getReference(); 
while (true) {
succ = curr.next.get(marked);
while (marked[0]) {
…
}
if (curr.key >= key)

return new Window(pred, curr);
pred = curr;
curr = succ; 

}
}}

Lock-free Find

Get ref to successor and 
current deleted bit
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public Window find(Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
retry: while (true) {

pred = head;
curr = pred.next.getReference(); 
while (true) {
succ = curr.next.get(marked); 
while (marked[0]) {
…
}
if (curr.key >= key)

return new Window(pred, curr);
pred = curr;
curr = succ; 

}
}}

Lock-free Find

Try to remove deleted nodes in 
path…code details soon
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public Window find(Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
retry: while (true) {

pred = head;
curr = pred.next.getReference(); 
while (true) {
succ = curr.next.get(marked); 
while (marked[0]) {
…
}
if (curr.key >= key)

return new Window(pred, curr);
pred = curr;
curr = succ; 

}
}}

Lock-free Find

If curr key that is greater or 
equal, return pred and curr
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public Window find(Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
retry: while (true) {

pred = head;
curr = pred.next.getReference(); 
while (true) {
succ = curr.next.get(marked); 
while (marked[0]) {
…
}
if (curr.key >= key)

return new Window(pred, curr);
pred = curr;
curr = succ;

}
}}

Lock-free Find

Otherwise advance window and 
loop again
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Lock-free Find

retry: while (true) {
…
while (marked[0]) {

snip = pred.next.compareAndSet(curr,              
succ, false, false);

if (!snip) continue retry;
curr = succ; 
succ = curr.next.get(marked); 

}
…
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Lock-free Find

retry: while (true) {
…
while (marked[0]) {

snip = pred.next.compareAndSet(curr,     
succ, false, false);

if (!snip) continue retry;
curr = succ;
succ = curr.next.get(marked); 

}
…

Try to snip out node 
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Lock-free Find

retry: while (true) {
…
while (marked[0]) {

snip = pred.next.compareAndSet(curr,     
succ, false, false);

if (!snip) continue retry;
curr = succ; 
succ = curr.next.get(marked); 

}
…

if predecessor’s next field changed, 
retry whole traversal 
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Lock-free Find

retry: while (true) {
…
while (marked[0]) {

snip = pred.next.compareAndSet(curr, 
succ, false, false);

if (!snip) continue retry;
curr = succ; 
succ = curr.next.get(marked); 

}
…

Otherwise move on to check 
if next node deleted



Performance 

• Different list-based set implementaions
• 16-node machine
• Vary  percentage of contains() calls
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High Contains Ratio

Lock-free 
Lazy list

Coarse Grained
Fine Lock-coupling
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Low Contains Ratio  

Lock-free 

Lazy list

Coarse Grained
Fine Lock-coupling



Art of Multiprocessor Programming 284

As Contains Ratio Increases  

Lock-free 
Lazy list

Coarse Grained
Fine Lock-coupling

% Contains()
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Summary

• Coarse-grained locking
• Fine-grained locking
• Optimistic synchronization
• Lazy synchronization
• Lock-free synchronization
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“To Lock or Not to Lock”

• Locking vs. Non-blocking:
– Extremist views on both sides 

• The answer: nobler to compromise
– Example: Lazy list combines  blocking add() 

and remove()and a wait-free contains()
– Remember: Blocking/non-blocking is a property 

of a method



An Optimistic Lock-free Stack 

pop( ){ 

1 local  done, next, t; 

2 done  = false; 

3 while (!done) { 

4     t = Top;   

5     if (t==null) return null; 

6     next = t.Next; 

7    done = CAS(&Top, t, next); 

8 } 

9 return t;  

 

push(x){ 

10 local done, t; 

 

11 done = false; 

12 while(!done) { 

13     t = Top; 

14     x.Next = t; 

15    done =  CAS(&Top, t, x); 

16 } 

17 return true; 
Bug#1: t might be a dangling 
pointer 

Bug#2: ABA problem leads to corrupted 
stacks  

… 
n Nex

t 
n Next 

Top 



ABA Problem 
Threads T1 and T2  are interleaved as follows: 

A 

C 

B 

Top 

t 

next 

B 

C next 
(removed) 

Top 

A 

B 

t 

Top 

C next 
(removed) 

Timeline 

T1: 

pop() 

{ 

    t = Top 

    next = t.Next 

    interrupted 

 
 
 
 
     resumes 

CAS(&Top,t,next)  

succeeds 

stack corrupted 

 
 
 
 
 
 
T2: 

   a = pop(); 

   c = pop(); 

   push(a); 



Summary 

Our winner:  Optimistic Lock-free. 

Second best:  Lazy. 

Third:         Optimistic. 

Fourth:  Fine-Grained. 

Last:  Coarse-Grained. 

 

     ? 



Summary 

Answer:    No. 

 

 

Choose your implementation carefully 
based on your requirements. 



Summary 

• Concurrent programming is hard. 

 

• Concurrency is error-prone. 

 

• Formal method is necessary. 

 




