
Introduction to Concurrency
and Multicore Programming

Slides adapted from
Art of Multicore Programming
by Herlihy and Shavit

Overview

• Introduction

• Mutual Exclusion

• Linearizability

• Concurrent Data Structure
– Linked-List Set

– Lock-free Stack

• Summary

What is Concurrency?

 A property of systems in which several
processes or threads are executing at the
same time.

Moore’s Law

Clock speed
flattening

sharply

Transistor
count still

rising

The Uniprocessor is Vanishing!

memory

cpu

The Shared Memory Multiprocessor
(SMP)

cache

Bus Bus

shared memory

cache cache

Your New Desktop: The Multicore
Processor

(CMP)

cache

Bus Bus

shared memory

cache cache
All on the
same chip

Sun
T2000
Niagara

Why do we care?

• Time no longer cures software bloat
– The “free ride” is over

• When you double your program’s path
length
– You can’t just wait 6 months

– Your software must somehow exploit twice
as much concurrency

Traditional Scaling Process

User code

Traditional
Uniprocessor

Speedup
1.8x

7x

3.6x

Time: Moore’s law

Multicore Scaling Process

User code

Multicore

Speedup 1.8x

7x

3.6x

Unfortunately, not so simple…

Real-World Scaling Process

1.8x 2x 2.9x

User code

Multicore

Speedup

Parallelization and Synchronization
require great care…

Sequential Computation

memory

object object

thread

Concurrent Computation

memory

object object

Asynchrony

• Sudden unpredictable delays
– Cache misses (short)

– Page faults (long)

– Scheduling quantum used up (really long)

Model Summary

• Multiple threads

• Single shared memory

• Objects live in memory

• Unpredictable asynchronous delays

Multithread Programming

• Java, C#, Pthreads

• Windows Thread API

• OpenMP

• Intel Parallel Studio Tool Kits

Java Thread

Concurrency Idea

• Challenge
– Print primes from 1 to 1010

• Given
– Ten-processor multiprocessor

– One thread per processor

• Goal
– Get ten-fold speedup (or close)

Load Balancing

• Split the work evenly

• Each thread tests range of 109

…

… 109 1010 2·109 1

P0 P1 P9

Procedure for Thread i

void primePrint {
 int i = ThreadID.get(); // IDs in {0..9}
 for (j = i*109+1, j<(i+1)*109; j++) {
 if (isPrime(j))
 print(j);
 }
}

Issues

• Higher ranges have fewer primes

• Yet larger numbers harder to test

• Thread workloads
– Uneven

– Hard to predict

Issues

• Higher ranges have fewer primes

• Yet larger numbers harder to test

• Thread workloads
– Uneven

– Hard to predict

• Need dynamic load balancing

Shared Counter

17

18

19

each thread
takes a number

Procedure for Thread i

int counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
}

Procedure for Thread i

Counter counter = new Counter(1);

void primePrint {
 long j = 0;
 while (j < 1010) {
 j = counter.getAndIncrement();
 if (isPrime(j))
 print(j);
 }
}

Shared counter
object

Where Things Reside

cache

Bus Bus

cache cache

1

shared counter

shared
memory

void primePrint {
 int i =
ThreadID.get(); // IDs
in {0..9}
 for (j = i*109+1,
j<(i+1)*109; j++) {
 if (isPrime(j))
 print(j);
 }
}

code

Local
variables

Counter Implementation

public class Counter {
 private long value;

 public long getAndIncrement() {
 return value++;
 }
}

Counter Implementation

public class Counter {
 private long value;

 public long getAndIncrement() {
 return value++;
 }
}

What It Means

public class Counter {
 private long value;

 public long getAndIncrement() {
 return value++;
 }
}

What It Means

public class Counter {
 private long value;

 public long getAndIncrement() {
 return value++;
 }
}

 temp = value;

 value = value + 1;

 return temp;

time

Not so good…

Value… 1

read
1

read
1

write
2

read
2

write
3

write
2

2 3 2

Is this problem inherent?

If we could only glue reads and writes…

read

write read

write

Challenge

public class Counter {
 private long value;

 public long getAndIncrement() {
 temp = value;
 value = temp + 1;
 return temp;
 }
}

Challenge

public class Counter {
 private long value;

 public long getAndIncrement() {
 temp = value;
 value = temp + 1;
 return temp;
 }
}

Make these steps
atomic (indivisible)

Hardware Solution

public class Counter {
 private long value;

 public long getAndIncrement() {
 temp = value;
 value = temp + 1;
 return temp;
 }
} ReadModifyWrite()

instruction

An Aside: Java™

public class Counter {
 private long value;

 public long getAndIncrement() {
 synchronized {
 temp = value;
 value = temp + 1;
 }
 return temp;
 }
}

An Aside: Java™

public class Counter {
 private long value;

 public long getAndIncrement() {
 synchronized {
 temp = value;
 value = temp + 1;
 }
 return temp;
 }
}

Synchronized block

An Aside: Java™

public class Counter {
 private long value;

 public long getAndIncrement() {
 synchronized {
 temp = value;
 value = temp + 1;
 }
 return temp;
 }
}

Mutual Exclusion

Mutual Exclusion

 The problem of ensuring that no two
processes or threads can be in their
critical section at the same time.

time

• An event a0 of thread A is
– Instantaneous

– No simultaneous events (break ties)

a0

Events

time

• A thread A is (formally) a sequence
a0, a1, ... of events
– “Trace” model

– Notation: a0  a1 indicates order

a0

Threads

a1 a2 …

• Assign to shared variable

• Assign to local variable

• Invoke method

• Return from method

• Lots of other things …

Example Thread Events

Threads are State Machines

Events are
transitions

a0

a1 a2

a3

States

• Thread State
– Program counter

– Local variables

• System state
– Object fields (shared variables)

– Union of thread states

time

• Thread A

Concurrency

time

time

• Thread A

• Thread B

Concurrency

time

Interleavings

• Events of two or more threads
– Interleaved

– Not necessarily independent (why?)

time

• An interval A0 =(a0,a1) is
– Time between events a0 and a1

a0 a1

Intervals

A0

time

Intervals may Overlap

a0 a1 A0

b0 b1 B0

time

Intervals may be Disjoint

a0 a1 A0

b0 b1 B0

time

Precedence

a0 a1 A0

b0 b1 B0

Interval A0 precedes interval B0

Precedence

• Notation: A0  B0

• Formally,
– End event of A0 before start event of B0

– Also called “happens before” or
“precedes”

Precedence Ordering

• Never true that A  A

• If A B then not true that B A

• If A B & B C then A C

• Funny thing: A B & B A might both
be false!

Partial Orders
(you may know this already)

• Irreflexive:
– Never true that A  A

• Antisymmetric:
– If A  B then not true that B  A

• Transitive:
– If A  B & B  C then A  C

Total Orders
(you may know this already)

• Also
– Irreflexive

– Antisymmetric

– Transitive

• Except that for every distinct A, B,
– Either A  B or B  A

Implementing a Counter

public class Counter {
 private long value;

 public long getAndIncrement() {
 temp = value;
 value = temp + 1;
 return temp;
 }
}

Make these steps
indivisible using

locks

Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

acquire lock

Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

release lock

acquire lock

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;

 }}

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;
 }}

acquire Lock

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;

 }}

Release lock
(no matter what)

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;

 }}

Critical
section

Mutual Exclusion

• Let CSi
k be thread i’s k-th critical

section execution

Mutual Exclusion

• Let CSi
k be thread i’s k-th critical

section execution

• And CSj
m be thread j’s m-th critical

section execution

Mutual Exclusion

• Let CSi
k be thread i’s k-th critical

section execution

• And CSj
m be j’s m-th execution

• Then either
– or

Mutual Exclusion

• Let CSi
k be thread i’s k-th critical

section execution

• And CSj
m be j’s m-th execution

• Then either
– or

CSi
k  CSj

m

Mutual Exclusion

• Let CSi
k be thread i’s k-th critical

section execution

• And CSj
m be j’s m-th execution

• Then either
– or

CSi
k  CSj

m

CSj
m  CSi

k

Deadlock-Free

• If some thread calls lock()
– And never returns

– Then other threads must complete lock()
and unlock() calls infinitely often

• System as a whole makes progress
– Even if individuals starve

Starvation-Free

• If some thread calls lock()
– It will eventually return

• Individual threads make progress

class … implements Lock {
 …
 // thread-local index, 0 or 1
 public void lock() {
 int i = ThreadID.get();
 int j = 1 - i;
 …

 }
}

Two-Thread Conventions

class … implements Lock {
 …
 // thread-local index, 0 or 1
 public void lock() {
 int i = ThreadID.get();
 int j = 1 - i;
 …

 }
}

Two-Thread Conventions

Henceforth: i is current
thread, j is other thread

LockOne

class LockOne implements Lock {
private boolean[] flag =
 new boolean[2];
public void lock() {
 flag[i] = true;
 while (flag[j]) {}
 }

LockOne

class LockOne implements Lock {
private boolean[] flag =
 new boolean[2];
public void lock() {
 flag[i] = true;
 while (flag[j]) {}
 }

Set my flag

class LockOne implements Lock {
private boolean[] flag =
 new boolean[2];
public void lock() {
 flag[i] = true;
 while (flag[j]) {}
 }

LockOne

Wait for other
flag to go false

Set my flag

• Assume CSA
j overlaps CSB

k

• Consider each thread's last (j-th
and k-th) read and write in the
lock() method before entering

• Derive a contradiction

LockOne Satisfies Mutual
Exclusion

• writeA(flag[A]=true) 
readA(flag[B]==false) CSA

• writeB(flag[B]=true) 
readB(flag[A]==false)  CSB

From the Code

class LockOne implements Lock {
…
public void lock() {
 flag[i] = true;
 while (flag[j]) {}
 }

• readA(flag[B]==false) 
writeB(flag[B]=true)

• readB(flag[A]==false) 
writeA(flag[B]=true)

From the Assumption

• Assumptions:
– readA(flag[B]==false)  writeB(flag[B]=true)

– readB(flag[A]==false)  writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true)  readA(flag[B]==false)

– writeB(flag[B]=true)  readB(flag[A]==false)

Combining

• Assumptions:
– readA(flag[B]==false)  writeB(flag[B]=true)

– readB(flag[A]==false)  writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true)  readA(flag[B]==false)

– writeB(flag[B]=true)  readB(flag[A]==false)

Combining

• Assumptions:
– readA(flag[B]==false)  writeB(flag[B]=true)

– readB(flag[A]==false)  writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true)  readA(flag[B]==false)

– writeB(flag[B]=true)  readB(flag[A]==false)

Combining

• Assumptions:
– readA(flag[B]==false)  writeB(flag[B]=true)

– readB(flag[A]==false)  writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true)  readA(flag[B]==false)

– writeB(flag[B]=true)  readB(flag[A]==false)

Combining

• Assumptions:
– readA(flag[B]==false)  writeB(flag[B]=true)

– readB(flag[A]==false)  writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true)  readA(flag[B]==false)

– writeB(flag[B]=true)  readB(flag[A]==false)

Combining

• Assumptions:
– readA(flag[B]==false)  writeB(flag[B]=true)

– readB(flag[A]==false)  writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true)  readA(flag[B]==false)

– writeB(flag[B]=true)  readB(flag[A]==false)

Combining

Cycle!

Deadlock Freedom

• LockOne Fails deadlock-freedom
– Concurrent execution can deadlock

– Sequential executions OK

 flag[i] = true; flag[j] = true;
 while (flag[j]){} while (flag[i]){}

LockTwo
public class LockTwo implements Lock {
 private int victim;
 public void lock() {
 victim = i;
 while (victim == i) {};
 }

 public void unlock() {}
}

LockTwo
public class LockTwo implements Lock {
 private int victim;
 public void lock() {
 victim = i;
 while (victim == i) {};
 }

 public void unlock() {}
}

Let other go
first

LockTwo
public class LockTwo implements Lock {
 private int victim;
 public void lock() {
 victim = i;
 while (victim == i) {};
 }

 public void unlock() {}
}

Wait for
permission

LockTwo
public class Lock2 implements Lock {
 private int victim;
 public void lock() {
 victim = i;
 while (victim == i) {};
 }

 public void unlock() {}
}

Nothing to do

public void LockTwo() {
 victim = i;
 while (victim == i) {};
 }

LockTwo Claims

• Satisfies mutual exclusion
– If thread i in CS

– Then victim == j

– Cannot be both 0 and 1

• Not deadlock free
– Sequential execution deadlocks

– Concurrent execution does not

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}

Announce I’m
interested

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}

Announce I’m
interested

Defer to other

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}

Announce I’m
interested

Defer to other

Wait while other
interested & I’m

the victim

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
 }
public void unlock() {
 flag[i] = false;
}

Announce I’m
interested

Defer to other

Wait while other
interested & I’m

the victim
No longer
interested

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};

Mutual Exclusion

• If thread 1 in
critical section,
– flag[1]=true,

– victim = 0

• If thread 0 in
critical section,
– flag[0]=true,

– victim = 1

Cannot both be true

Deadlock Free

• Thread blocked
– only at while loop

– only if it is the victim

• One or the other must not be the victim

public void lock() {
 …
 while (flag[j] && victim == i) {};

Starvation Free

• Thread i blocked
only if j repeatedly
re-enters so that

 flag[j] == true and
victim == i

• When j re-enters
– it sets victim to j.
– So i gets in

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}

public void unlock() {
 flag[i] = false;
}

Other Lock Algorithms

• The Filter Algorithm for n Threads

• Bakery Algorithm

Theorem: At least N MRSW (multi-reader/single-
writer) registers are needed to solve deadlock-free
mutual exclusion.

N registers like Flag[]…

FIFO Queue: Enqueue Method

q.enq()

FIFO Queue: Dequeue Method

q.deq()/

 A Lock-Based Queue

class LockBasedQueue<T> {
 int head, tail;
 T[] items;
 Lock lock;
 public LockBasedQueue(int capacity) {
 head = 0; tail = 0;
 lock = new ReentrantLock();
 items = (T[]) new Object[capacity];
}

 A Lock-Based Queue

class LockBasedQueue<T> {
 int head, tail;
 T[] items;
 Lock lock;
 public LockBasedQueue(int capacity) {
 head = 0; tail = 0;
 lock = new ReentrantLock();
 items = (T[]) new Object[capacity];
}

0 1

capacity-1
2

head tail

y z

Queue fields
protected by
single shared lock

 A Lock-Based Queue

class LockBasedQueue<T> {
 int head, tail;
 T[] items;
 Lock lock;
 public LockBasedQueue(int capacity) {
 head = 0; tail = 0;
 lock = new ReentrantLock();
 items = (T[]) new Object[capacity];
}

0 1

capacity-1
2

head tail

y z

Initially head = tail

Implementation: Deq

public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

0 1

capacity-1
2

head tail

y z

Implementation: Deq

public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

Method calls
mutually exclusive

0 1

capacity-1
2

head tail

y z

Implementation: Deq

public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

If queue empty
throw exception

0 1

capacity-1
2

head tail

y z

Implementation: Deq

public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

Queue not empty:
remove item and update

head

0 1

capacity-1
2

head tail

y z

Implementation: Deq

public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

Return result

0 1

capacity-1
2

head tail

y z

Implementation: Deq

public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
} Release lock no matter

what!

0 1

capacity-1
2

head tail

y z

Implementation: Deq

public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

Now consider the following
implementation

• The same thing without mutual
exclusion

• For simplicity, only two threads
– One thread enq only

– The other deq only

Art of Multiprocessor
Programming

114

Wait-free 2-Thread Queue
public class WaitFreeQueue {

 int head = 0, tail = 0;
 items = (T[]) new Object[capacity];

 public void enq(Item x) {
 while (tail-head == capacity); // busy-wait
 items[tail % capacity] = x; tail++;
 }
 public Item deq() {
 while (tail == head); // busy-wait
 Item item = items[head % capacity]; head++;
 return item;
}}

Wait-free 2-Thread Queue
public class LockFreeQueue {

 int head = 0, tail = 0;
 items = (T[]) new Object[capacity];

 public void enq(Item x) {
 while (tail-head == capacity); // busy-wait
 items[tail % capacity] = x; tail++;
 }
 public Item deq() {
 while (tail == head); // busy-wait
 Item item = items[head % capacity]; head++;
 return item;
}}

0 1

capacity-1
2

head tail

y z

Lock-free 2-Thread Queue
public class LockFreeQueue {

 int head = 0, tail = 0;
 items = (T[])new Object[capacity];

 public void enq(Item x) {
 while (tail-head == capacity); // busy-wait
 items[tail % capacity] = x; tail++;
 }
 public Item deq() {
 while (tail == head); // busy-wait
 Item item = items[head % capacity]; head++;
 return item;
}}

0 1

capacity-1
2

head tail

y z

Queue is updated without a lock!

Defining concurrent queue
implementations

• Need a way to specify a concurrent
queue object

• Need a way to prove that an
algorithm implements the object’s
specification

• Lets talk about object
specifications …

Sequential Objects

• Each object has a state
– Usually given by a set of fields

– Queue example: sequence of items

• Each object has a set of methods
– Only way to manipulate state

– Queue example: enq and deq methods

Sequential Specifications
• If (precondition)

– the object is in such-and-such a state

– before you call the method,

• Then (postcondition)

– the method will return a particular value

– or throw a particular exception.

• and (postcondition, con’t)

– the object will be in some other state

– when the method returns,

Pre and PostConditions for
Dequeue

• Precondition:
– Queue is non-empty

• Postcondition:
– Returns first item in queue

• Postcondition:
– Removes first item in queue

Pre and PostConditions for
Dequeue

• Precondition:
– Queue is empty

• Postcondition:
– Throws Empty exception

• Postcondition:
– Queue state unchanged

What About Concurrent
Specifications ?

• Methods?

• Documentation?

• Adding new methods?

Methods Take Time

time time

Methods Take Time

time

invocation
12:00

q.enq(...)

time

Art of Multiprocessor
Programming

125

Methods Take Time

time

Method call

invocation
12:00

q.enq(...)

time

Methods Take Time

time

Method call

invocation
12:00

q.enq(...)

time

Methods Take Time

time

Method call

invocation
12:00

q.enq(...)

time

void

response
12:01

Sequential vs Concurrent

• Sequential
– Methods take time? Who knew?

• Concurrent
– Method call is not an event

– Method call is an interval.

time

Concurrent Methods Take
Overlapping Time

time

time

Concurrent Methods Take
Overlapping Time

time

Method call

time

Concurrent Methods Take
Overlapping Time

time

Method call

Method call

time

Concurrent Methods Take
Overlapping Time

time

Method call Method call

Method call

Sequential vs Concurrent

• Sequential:
– Object needs meaningful state only

between method calls

• Concurrent
– Because method calls overlap, object

might never be between method calls

Sequential vs Concurrent

• Sequential:
– Each method described in isolation

• Concurrent
– Must characterize all possible

interactions with concurrent calls
• What if two enqs overlap?

• Two deqs? enq and deq? …

Sequential vs Concurrent

• Sequential:
– Can add new methods without affecting

older methods

• Concurrent:
– Everything can potentially interact with

everything else

Sequential vs Concurrent

• Sequential:
– Can add new methods without affecting

older methods

• Concurrent:
– Everything can potentially interact with

everything else

Intuitively…

public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

Intuitively…

public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

All modifications
of queue are done
mutually exclusive

time

Intuitively

q.deq

q.enq

 enq deq

 lock() unlock()

lock() unlock()
Behavior is
“Sequential”

enq

deq

Lets capture the idea of describing
the concurrent via the sequential

Is it really about the object?

• Each method should
– “take effect”

– Instantaneously

– Between invocation and response events

• Object is correct if this “sequential”
behavior is correct

• A linearizable object: one all of whose
possible executions are linearizable

Example

time time

Example

time

q.enq(x)

time

Example

time

q.enq(x)

q.enq(y)

time

Example

time

q.enq(x)

q.enq(y) q.deq(x)

time

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)
q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)
q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

Example

time

Example

time

q.enq(x)

Example

time

q.enq(x) q.deq(y)

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

Example

time time

Example

time

q.enq(x)

time

Example

time

q.enq(x)

q.deq(x)

time

Example

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

time

Example

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

time

Example

time

q.enq(x)

time

Example

time

q.enq(x)

q.enq(y)

time

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

time

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

time

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

Comme ci Example

time

Comme ça

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(0)

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(0)

write(1) already
happened

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(0) write(1)

write(1) already
happened

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(0) write(1)

write(1) already
happened

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1)

write(1) already
happened

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

write(1) already
happened

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

write(1) already
happened

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1)

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1) write(1)

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(2) write(1)

write(2)

Talking About Executions

• Why?
– Can’t we specify the linearization point

of each operation without describing an
execution?

• Not Always
– In some cases, linearization point

depends on the execution

Formal Model of Executions

• Define precisely what we mean
– Ambiguity is bad when intuition is weak

• Allow reasoning
– Formal

– But mostly informal

Split Method Calls into Two
Events

• Invocation
– method name & args
– q.enq(x)

• Response
– result or exception
– q.enq(x) returns void
– q.deq() returns x
– q.deq() throws empty

Invocation Notation

A q.enq(x)

Invocation Notation

A q.enq(x)

thread

Invocation Notation

A q.enq(x)

thread method

Invocation Notation

A q.enq(x)

thread

object

method

Invocation Notation

A q.enq(x)

thread

object

method

arguments

Response Notation

A q: void

Response Notation

A q: void

thread

Response Notation

A q: void

thread result

Response Notation

A q: void

thread

object

result

History - Describing an
Execution

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

Sequence of
invocations and

responses

H =

Definition

• Invocation & response match if

A q.enq(3)

A q:void

Thread
names agree

Object names
agree

Method call

Object Projections

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H =

Object Projections

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H|q =

Thread Projections

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H =

Thread Projections

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H|B =

Complete Subhistory

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

An invocation is
pending if it has no
matching respnse

H =

Complete Subhistory

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

May or may not have
taken effect

H =

Complete Subhistory

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

discard pending
invocations

H =

Complete Subhistory

A q.enq(3)
A q:void

B p.enq(4)
B p:void
B q.deq()
B q:3

Complete(H) =

Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match

Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match

match

Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match

match

match

Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match

match

match

Final pending
invocation OK

Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match

match

match

Final pending
invocation OK

Well-Formed Histories

H=

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

Well-Formed Histories

H=

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

H|B=
B p.enq(4)
B p:void
B q.deq()
B q:3

Per-thread projections
sequential

Well-Formed Histories

H=

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

H|B=
B p.enq(4)
B p:void
B q.deq()
B q:3

A q.enq(3)
A q:void

H|A=

Per-thread projections
sequential

Equivalent Histories

H=

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

Threads see the same
thing in both

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

G=

H|A = G|A
H|B = G|B

Sequential Specifications

• A sequential specification is some way
of telling whether a
– Single-thread, single-object history

– Is legal

• For example:
– Pre and post-conditions

– But plenty of other techniques exist …

Legal Histories

• A sequential (multi-object) history H
is legal if
– For every object x

– H|x is in the sequential spec for x

Precedence

A q.enq(3)
B p.enq(4)
B p.void
A q:void
B q.deq()
B q:3

A method call precedes
another if response event
precedes invocation event

Method call Method call

Non-Precedence

A q.enq(3)
B p.enq(4)
B p.void
B q.deq()
A q:void
B q:3

Some method calls
overlap one another

Method call

Method call

Notation

• Given
– History H
– method executions m0 and m1 in H

• We say m0 H m1, if

– m0 precedes m1

• Relation m0 H m1 is a
– Partial order
– Total order if H is sequential

m0 m1

Linearizability

• History H is linearizable if it can be
extended to G by
– Appending zero or more responses to

pending invocations
– Discarding other pending invocations

• So that G is equivalent to
– Legal sequential history S
– where G  S

What is G  S

time

a

b

time S

c G

G = {ac,bc}

S = {ab,ac,bc}

Remarks

• Some pending invocations
– Took effect, so keep them

– Discard the rest

• Condition G  S
– Means that S respects “real-time order”

of G

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)

Example

time

B.q.enq(4)

A. q.enq(3)

B.q.deq(4) B. q.enq(6)

Art of Multiprocessor
Programming

219

Example

Complete this pending
invocation

time

B.q.enq(4) B.q.deq(3) B. q.enq(6)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)

A. q.enq(3)

Example

Complete this pending
invocation

time

B.q.enq(4) B.q.deq(4) B. q.enq(6)

A.q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)
A q:void

Example

time

B.q.enq(4) B.q.deq(4) B. q.enq(6)

A.q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)
A q:void

discard this one

Art of Multiprocessor
Programming

222

Example

time

B.q.enq(4) B.q.deq(4)

A.q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4

A q:void

discard this one

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

time

B.q.enq(4) B.q.deq(4)

A.q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

time

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

B.q.enq(4) B.q.deq(4)

A.q.enq(3)

B.q.enq(4) B.q.deq(4)

A.q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

time

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

Equivalent sequential history

Reasoning About
Linearizability: Locking

public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

0 1
capacity-1

2

head tail

y z

Reasoning About
Linearizability: Locking

public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

Linearization points
are when locks are

released

228

More Reasoning: Wait-free
0 1

capacity-1
2

head tail

y z

public class WaitFreeQueue {

 int head = 0, tail = 0;
 items = (T[]) new Object[capacity];

 public void enq(Item x) {
 if (tail-head == capacity) throw
 new FullException();
 items[tail % capacity] = x; tail++;
 }
 public Item deq() {
 if (tail == head) throw
 new EmptyException();
 Item item = items[head % capacity]; head++;
 return item;
}}

0 1
capacity-1

2

head tail

y z

public class WaitFreeQueue {

 int head = 0, tail = 0;
 items = (T[]) new Object[capacity];

 public void enq(Item x) {
 if (tail-head == capacity) throw
 new FullException();
 items[tail % capacity] = x; tail++;
 }
 public Item deq() {
 if (tail == head) throw
 new EmptyException();
 Item item = items[head % capacity]; head++;
 return item;
}}

More Reasoning: Wait-free

0 1
capacity-1

2

head tail

y z
Linearization order is
order head and tail

fields modified

Linearizability: Summary

• Powerful specification tool for shared
objects

• Allows us to capture the notion of
objects being “atomic”

• Don’t leave home without it

Ordered linked list
implementation of a set

a b c -∞ +∞

a b c

Sorted with Sentinel nodes
(min & max possible keys)

-∞

+∞

Defining the linked list

Defining concurrent methods
properties

• Invariant:
– Property that always holds.

– Established because

– True when object is created.

– Truth preserved by each method
• Each step of each method.

Defining concurrent methods
properties

• Rep-Invariant:
– The invariant on our concrete

Representation = on the list.

– Preserved by methods.

– Relied on by methods.

– Allows us to reason about each method in
isolation without considering how they
interact.

Defining concurrent methods
properties

• Our Rep-invariant:
– Sentinel nodes

• tail reachable from head.

– Sorted

– No duplicates

• Depends on the implementation.

Defining concurrent methods
properties

• Abstraction Map:

• S(List) =
– { x | there exists a such that

• a reachable from head and

• a.item = x

– }

• Depends on the implementation.

Abstract Data Types

• Example:

– S() = {a,b} a b

a b

• Concrete representation:

• Abstract Type:
– {a, b}

Defining concurrent methods
properties

• Wait-free: Every call to the function
finishes in a finite number of steps.

Supposing the Scheduler is fair:

• Starvation-free: every thread calling the
method eventually returns.

Algorithms

• Next: going throw each algorithm.
• 1. Describing the algorithm.

• 2. Explaining why every step of the algorithm is
needed.

• 3. Code review.

• 4. Analyzing each method properties.

• 5. Advantages / Disadvantages.

• 6. Presenting running times for the
implementation of the algorithm.

• + Example of proving correctness for Remove(x)
in FineGrained.

240

0.Sequential List Based Set

a c d

a b c

Add()

Remove()

a c d

b

a b c

Add()

Remove()

0.Sequential List Based Set

1.Course Grained

a b d

1. Describing the algorithm:

• Most common implementation

today.

• Add(x) / Remove(x) / Contains(x):
- Lock the entire list then perform the operation.

1.Course Grained

a b d

c

• Most common implementation today

1. Describing the algorithm:

• All methods perform operations on the list while
holding the lock, so the execution is essentially
sequential.

3. Code review:

 Add:

 public boolean add(T item) {

 Node pred, curr;

 int key = item.hashCode();

 lock.lock();

 try {

 pred = head;

 curr = pred.next;

 while (curr.key < key) {

 pred = curr;

 curr = curr.next;

 }

 if (key == curr.key) {

 return false;

 } else {

 Node node = new Node(item);

 node.next = curr;

 pred.next = node;

 return true;

 }

 } finally {

 lock.unlock();

 }

 }

Finding the place to add the item

Adding the item if it wasn’t already in the list

1.Course Grained

Art of Multiprocessor Programming 245

3. Code review:

 Remove:

 public boolean remove(T item) {

 Node pred, curr;

 int key = item.hashCode();

 lock.lock();

 try {

 pred = this.head;

 curr = pred.next;

 while (curr.key < key) {

 pred = curr;

 curr = curr.next;

 }

 if (key == curr.key) {

 pred.next = curr.next;

 return true;

 } else {

 return false;

 }

 } finally {

 lock.unlock();

 }

 }

Finding the item

Removing the item

1.Course Grained

246

3. Code review:

 Contains:

 public boolean contains(T item) {

 Node pred, curr;

 int key = item.hashCode();

 lock.lock();

 try {

 pred = head;

 curr = pred.next;

 while (curr.key < key) {

 pred = curr;

 curr = curr.next;

 }

 return (key == curr.key);

 } finally {lock.unlock();

 }

 }

Finding the item

Returning true if found

1.Course Grained

4. Methods properties:

• The implementation inherits its progress

conditions from those of the Lock, and so
assuming fair Scheduler:

 - If the Lock implementation is Starvation
free

 Every thread will eventually get the lock and
 eventually the call to the function will return.

• So our implementation of Insert, Remove and
Contains is Starvation-free

1.Course Grained

5. Advantages / Disadvantages:

Advantages:

 - Simple.

 - Obviously correct.

Disadvantages:

 - High Contention.

 - Bottleneck!

1.Course Grained

6. Running times:

1.Course Grained

• The tests were run on Aries – Supports 32
running threads. UltraSPARC T1 - Sun
Fire T2000.

• Total of 200000 operations.

• 10% adds, 2% removes, 88% contains – normal
work load percentages on a set.

• Each time the list was initialized with 100
elements.

• One run with a max of 20000 items in the list.
Another with only 2000.

6. Running times:

1.Course Grained

Speed up

0

5

10

15

20

25

30

4 8 12 16 20 24 28 32

No. Threads

S
e
c
o

n
d

s 2000 max
items in list

20000 max
items in list

2.Fine Grained

1. Describing the algorithm:

• Split object into pieces
– Each piece has own lock.

– Methods that work on disjoint pieces
need not exclude each other.

2.Fine Grained

• Add(x) / Remove(x) / Contains(x):

– Go throw the list, lock each node and release
only after the lock of the next element has
been acquired.

– Once you have reached the right point of the
list perform the Add / Remove / Contains
operation.

1. Describing the algorithm:

a b c d

remove(b)

2.Fine Grained

1. Describing the algorithm: illustrated Remove.

a b c d

remove(b)

2.Fine Grained

1. Describing the algorithm: illustrated Remove.

a b c d

remove(b)

2.Fine Grained

1. Describing the algorithm: illustrated Remove.

a b c d

remove(b)

2.Fine Grained

1. Describing the algorithm: illustrated Remove.

a b c d

remove(b)

2.Fine Grained

1. Describing the algorithm: illustrated Remove.

a c d

remove(b)

2.Fine Grained

1. Describing the algorithm: illustrated Remove.

Why do we need
to always hold 2
locks?

2.Fine Grained

2. Explaining why every step is needed.

a b c d

remove(c)
remove(b)

2.Fine Grained

Concurrent removes

2. Explaining why every step is needed.

a b c d

remove(b)
remove(c)

2.Fine Grained

Concurrent removes

2. Explaining why every step is needed.

a b c d

remove(b)
remove(c)

2.Fine Grained

Concurrent removes

2. Explaining why every step is needed.

a b c d

remove(b)
remove(c)

2.Fine Grained

Concurrent removes

2. Explaining why every step is needed.

a b c d

remove(b)
remove(c)

2.Fine Grained

Concurrent removes

2. Explaining why every step is needed.

a b c d

remove(b)
remove(c)

2.Fine Grained

Concurrent removes

2. Explaining why every step is needed.

Concurrent Removes

a b c d

remove(b)
remove(c)

2. Explaining why every step is needed.

Concurrent Removes

a b c d

remove(b)
remove(c)

2. Explaining why every step is needed.

a c d

remove(b)
remove(c)

2.Fine Grained

Concurrent removes

2. Explaining why every step is needed.

a c d

Bad news, C
not removed remove(b)

remove(c)

2.Fine Grained

Concurrent removes

2. Explaining why every step is needed.

a b c d

remove(b)
remove(c)

Concurrent removes

Now with 2 locks.

2.Fine Grained

2. Explaining why every step is needed.

a b c d

remove(b)
remove(c)

Concurrent removes

Now with 2 locks.

2.Fine Grained

2. Explaining why every step is needed.

a b c d

remove(b)
remove(c)

Concurrent removes

Now with 2 locks.

2.Fine Grained

2. Explaining why every step is needed.

a b c d

remove(b)
remove(c)

Concurrent removes

Now with 2 locks.

2.Fine Grained

2. Explaining why every step is needed.

a b c d

remove(b)
remove(c)

Concurrent removes

Now with 2 locks.

2.Fine Grained

2. Explaining why every step is needed.

a b c d

remove(b)
remove(c)

Concurrent removes

Now with 2 locks.

2.Fine Grained

2. Explaining why every step is needed.

a b c d

remove(b)
remove(c)

Concurrent removes

Now with 2 locks.

2.Fine Grained

2. Explaining why every step is needed.

a b c d

remove(b)
remove(c)

Concurrent removes

Now with 2 locks.

2.Fine Grained

2. Explaining why every step is needed.

a b c d

Must
acquire

Lock of b

remove(c)

Concurrent removes

Now with 2 locks.

2.Fine Grained

2. Explaining why every step is needed.

a b c d

Cannot
acquire

lock of b

remove(c)

Concurrent removes

Now with 2 locks.

2.Fine Grained

2. Explaining why every step is needed.

a b c d

Wait!
remove(c)

Concurrent removes

Now with 2 locks.

2.Fine Grained

2. Explaining why every step is needed.

a b d

Proceed
to

remove(b)

Concurrent removes

Now with 2 locks.

2.Fine Grained

2. Explaining why every step is needed.

a b d

remove(b)

Concurrent removes

Now with 2 locks.

2.Fine Grained

2. Explaining why every step is needed.

a b d

remove(b)

Concurrent removes

Now with 2 locks.

2.Fine Grained

2. Explaining why every step is needed.

a d

remove(b)

Concurrent removes

Now with 2 locks.

2.Fine Grained

2. Explaining why every step is needed.

2.Fine Grained

• Conclusion:

• Now that we hold 2 locks for Remove / Add /
Contains. If a node is locked :
– It can’t be removed and so does the next node in the

list.

– No new node can be added before it and after it.

2. Explaining why every step is needed.

Art of Multiprocessor Programming 106

Remove method

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {
…

} finally {
curr.unlock();
pred.unlock();
}}

Art of Multiprocessor Programming 107

Remove method

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {
…

} finally {
curr.unlock();
pred.unlock();
}}

Key used to order node

Art of Multiprocessor Programming 108

Remove method

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {
…

} finally {
currNode.unlock();
predNode.unlock();
}}

Predecessor and current nodes

Art of Multiprocessor Programming 109

Remove method

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {
…

} finally {
curr.unlock();
pred.unlock();
}}

Make sure
locks released

Art of Multiprocessor Programming 110

Remove method

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {
…

} finally {
curr.unlock();
pred.unlock();
}}

Everything else

Art of Multiprocessor Programming 111

Remove method

try {
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
…
} finally { … }

Art of Multiprocessor Programming 112

Remove method

try {
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
…
} finally { … }

lock pred == head

Art of Multiprocessor Programming 113

Remove method

try {
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
…
} finally { … }

Lock current

Art of Multiprocessor Programming 114

Remove method

try {
pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();
…
} finally { … }

Traversing list

Art of Multiprocessor Programming 115

Remove: searching

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Art of Multiprocessor Programming 116

Remove: searching

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Search key range

Art of Multiprocessor Programming 117

Remove: searching

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

At start of each loop:
curr and pred locked

Art of Multiprocessor Programming 118

Remove: searching

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;If item found, remove node

Art of Multiprocessor Programming 119

Remove: searching

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;If node found, remove it

Art of Multiprocessor Programming 120

Remove: searching

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Unlock predecessor

Art of Multiprocessor Programming 121

Remove: searching

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Only one node locked!

Art of Multiprocessor Programming 122

Remove: searching

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

demote current

Art of Multiprocessor Programming 123

Remove: searching

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = currNode;
curr = curr.next;
curr.lock();
}
return false;

Find and lock new current

Art of Multiprocessor Programming 124

Remove: searching
while (curr.key <= key) {

if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = currNode;
curr = curr.next;
curr.lock();
}
return false;

Lock invariant restored

Art of Multiprocessor Programming 125

Remove: searching

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Otherwise, not present

3. Code review:

 Add:

public boolean add(T item) {

 int key = item.hashCode();

 head.lock();

 Node pred = head;

 try {

 Node curr = pred.next;

 curr.lock();

 try {

 while (curr.key < key) {

 pred.unlock();

 pred = curr;

 curr = curr.next;

 curr.lock();

 }

Finding the place to
add the item:

2.Fine Grained

if (curr.key == key) {

 return false;

 }

 Node newNode = new Node(item);

 newNode.next = curr;

 pred.next = newNode;

 return true;

 } finally {

 curr.unlock();

 }

 } finally {

 pred.unlock();

 }

 }

Adding the item:

Continued:

3. Code review:

 Contains:

 public boolean contains(T item) {

 Node pred = null, curr = null;

 int key = item.hashCode();

 head.lock();

 try {

 pred = head;

 curr = pred.next;

 curr.lock();

 try {

 while (curr.key < key) {

 pred.unlock();

 pred = curr;

 curr = curr.next;

 curr.lock();

 }

2.Fine Grained

return (curr.key == key);

 } finally {

 curr.unlock();

 }

 } finally {

 pred.unlock();

 }

 }

Return true iff found

Continued:

Finding the place to
add the item:

Proving correctness for Remove(x) function:

2.Fine Grained

• So how do we prove correctness of a method in
a concurrent environment?

1. Decide on a Rep-Invariant. Done!

2. Decide on an Abstraction map. Done!

3. Defining the operations:
 Remove(x): If x in the set => x won’t be in the set and return

true.

 If x isn’t in the set => don’t change the set and return false.
 Done!

Proving correctness for Remove(x) function:

2.Fine Grained

4. Proving that each function keeps the Rep-
Invariant:

 1. Tail reachable from head.

 2. Sorted.

 3. No duplicates.

 1. The newly created empty list obviously keeps
the Rep-invariant.

 2. Easy to see from the code that for each
function if the Rep-invariant was kept before
the call it will still hold after it.
Done!

Proving correctness for Remove(x) function:

2.Fine Grained

5. Split the function to all possible run time
outcomes.

In our case:

 1. Successful remove. (x was in the list)

 2. Failed remove. (x wasn’t in the
list)

 Done!

6. Proving for each possibility.

 We will start with a successful remove. (failed
remove is not much different)

Proving correctness for Remove(x) function:

2.Fine Grained

6. Deciding on a linearization point for a successful
remove.
 Reminder: Linearization point – a point in time that we

can say the function has happened in a running
execution.

 We will set the Linearization point to after the
second lock was acquired. Done!

successful remove.

Art of Multiprocessor Programming 127

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Why remove() is linearizable

•pred reachable from head
•curr is pred.next
•So curr.item is in the set

Art of Multiprocessor Programming 128

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Why remove() is linearizable

Linearization point if
item is present

Art of Multiprocessor Programming 129

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Why remove() is linearizable

Node locked, so no other
thread can remove it ….

Art of Multiprocessor Programming 130

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Why remove() is linearizable

Item not present

Art of Multiprocessor Programming 131

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Why remove() is linearizable

•pred reachable from head
•curr is pred.next
•pred.key < key
•key < curr.key

Art of Multiprocessor Programming 132

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;
return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
return false;

Why remove() is linearizable

Linearization point

Proving correctness for Remove(x) function:

2.Fine Grained

7. Now that the linearization point is set we need
to prove that:

 7.1. Before the linearization point the set
 contained x.

 7.2. After it the set won’t contain x.

successful remove.

296

Proving correctness for Remove(x) function:

2.Fine Grained

7.1. Before the linearization point the set contained
x.

 1. Since we proved the Rep-Invariant holds
then pred=z is accessible from the head.

 2. Since z,x are locked. No other concurrent
call can remove them.

 3. Since curr=x is pointed to by pred then x is
also accessible from the head.

y z x w

successful remove.

297

Proving correctness for Remove(x) function:

2.Fine Grained

– S() = {a,b}

y z x w

7.1. Before the linearization point the set contained
x. Now by the Abstraction map definition:

 since x is reachable from the head => x is in
the set! Done!

a b

successful remove.

Proving correctness for Remove(x) function:

2.Fine Grained

7.1. After it the set won’t contain x.

 1. after the linearization point: pred.next =
curr.next;

 Curr=x won’t be pointed to by pred=z and so won’t be
accessible from head.

y z x w

successful remove.

Proving correctness for Remove(x) function:

2.Fine Grained

7.1. After it the set won’t contain x.

 2. Now by the Abstraction map definition:

 since x is not reachable from the head => x is
 not in the set! Done!

y z x w

successful remove.

Proving correctness for Remove(x) function:

2.Fine Grained

• In conclusion:

– For every possible run time execution for Remove(x) we
found a linearization point that holds the remove
function specification in the set using the Abstraction
map while holding the Rep-Invariant.

 Done!

4. Methods properties:

2.Fine Grained

• Assuming fair scheduler. If the Lock
implementation is Starvation free:

 Every thread will eventually get the lock and
since all methods move in the same direction in
the list there won’t be deadlock and eventually
the call to the function will return.

• So our implementation of Insert, Remove and
Contains is Starvation-free.

5. Advantages / Disadvantages:

Advantages:

 - Better than coarse-grained lock

 Threads can traverse in parallel.

Disadvantages:

 - Long chain of acquire/release.

 - Inefficient.

2.Fine Grained

6. Running times:

 Speed up

0

10

20

30

40

50

4 8 12 16 20 24 28 32

No. Threads

S
e
c
o

n
d

s 2000 max
items in list

20000 max
items in list

2.Fine Grained

6. Running times:

 Speed up

max of 2000 items

0
2
4
6
8

10
12

4 8 12 16 20 24 28 32

No. Threads

S
e
c
o

n
d

s Fine List

Coarse
Grained

2.Fine Grained

6. Running times:

 Speed up

max of 20000 items

0

10

20

30

40

50

4 8 12 16 20 24 28 32

No. Threads

S
e
c
o

n
d

s Fine List

Coarse
Grained

2.Fine Grained

3. Optimistic

1. Describing the algorithm:

 Add(x) / Remove (x) / Contains(x):

1. Find nodes without locking

2. Lock nodes

3. Check that everything is OK = Validation.

 3.1 Check that pred is still reachable from head.

 3.2 Check that pred still points to curr.

4. If validation passed => do the operation.

b d e a

add(c) Aha!

3. Optimistic

1. Describing the algorithm:

• Example of add(c):

Finding without
locking

b d e a

add(c)

1. Describing the algorithm:

 Locking
• Example of add(c):

3. Optimistic

b d e a

add(c)

1. Describing the algorithm:

 Validation 1
• Example of add(c):

3. Optimistic

b d e a

add(c)

1. Describing the algorithm:

 Validation 1
• Example of add(c):

3. Optimistic

b d e a

add(c)

1. Describing the algorithm:

 Validation 2
• Example of add(c):

Yes. b is still
reachable from
head.

3. Optimistic

b d e a

add(c)

1. Describing the algorithm:

 Validation 2
• Example of add(c):

Yes. b still points to d.

3. Optimistic

b d e a

add(c)

c

3. Optimistic

1. Describing the algorithm:

 Add c.
• Example of add(c):

Why do we need
to Validate?

3. Optimistic

2. Explaining why every step is needed.

3. Optimistic

• First: Why do we need to validate that pred is
accessible from head?

• Thread A Adds(c).

• After thread A found b, before A locks. Another
thread removes b.

2. Explaining why every step is needed.

b d e a

b d e a

add(c) Aha!

3. Optimistic

• Adds(c).
Finding without locking

2. Explaining why every step is needed.

d e a

add(c)

3. Optimistic

b

Another thread removed
b

• Adds(c).

2. Explaining why every step is needed.

d e a

add(c)

3. Optimistic

b

Now A locks b and d

• Adds(c).

2. Explaining why every step is needed.

d e a

add(c)

3. Optimistic

b

And adds c

c

• Adds(c).

2. Explaining why every step is needed.

d e a

3. Optimistic

b

Now frees the locks.

But c isn’t added!

c

• Adds(c).

2. Explaining why every step is needed.

3. Optimistic

• Second: Why do we need to validate that pred
Still points to curr?

• Thread A removes(d).

• then thread A found b, before A locks. Another
thread adds(c).

2. Explaining why every step is needed.

b d e a

b d e a

add(c) Aha!

3. Optimistic

• Removes(d)
Finding without locking

2. Explaining why every step is needed.

d e a

add(c)

3. Optimistic

b

Another thread Adds(c)

c

• Removes(d)

2. Explaining why every step is needed.

d e a

add(c)

3. Optimistic

b

Now A locks.

c

• Removes(d)

2. Explaining why every step is needed.

d e a

add(c)

3. Optimistic

b

pred.next = curr.next;

• Removes(d)

c

2. Explaining why every step is needed.

3. Optimistic

Instead c and d were
deleted!

• Removes(d)

d e a b

c

Now frees the locks.

2. Explaining why every step is needed.

Art of Multiprocessor Programming 149

What Else Could Go Wrong?

b d ea

add(c) Aha!

Art of Multiprocessor Programming 150

What Else Coould Go Wrong?

b d ea

add(c)
add(b’)

Art of Multiprocessor Programming 151

What Else Coould Go Wrong?

b d ea

add(c)
add(b’)b’

Art of Multiprocessor Programming 152

What Else Could Go Wrong?

b d ea

add(c)
b’

Art of Multiprocessor Programming 153

What Else Could Go Wrong?

b d ea

add(c)

c

3. Optimistic

• Do notice that threads might traverse deleted
nodes. May cause problems to our Rep-Invariant.

• Careful not to recycle to the lists nodes that
were deleted while threads are in a middle of an
operation.

• With a garbage collection language like java – ok.

• For C – you need to solve this manually.

Important comment.

Art of Multiprocessor Programming 158

Correctness

• If
– Nodes b and c both locked
– Node b still accessible
– Node c still successor to b

• Then
– Neither will be deleted
– OK to delete and return true

Art of Multiprocessor Programming 159

Unsuccessful Remove

a b d e

remove(c
)

Aha!

Art of Multiprocessor Programming 160

Validate (1)

a b d e

Yes, b still
reachable
from head

remove(c)

Art of Multiprocessor Programming 161

Validate (2)

a b d e

remove(c) Yes, b still
points to d

Art of Multiprocessor Programming 162

OK Computer

a b d e

remove(c) return false

Art of Multiprocessor Programming 163

Correctness

• If
– Nodes b and d both locked
– Node b still accessible
– Node d still successor to b

• Then
– Neither will be deleted
– No thread can add c after b
– OK to return false

Art of Multiprocessor Programming 164

Validation
private boolean
validate(Node pred,

Node curry) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;
}
return false;
}

Art of Multiprocessor Programming 165

private boolean
validate(Node pred,

Node curr) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;
}
return false;

}

Validation

Predecessor &
current nodes

Art of Multiprocessor Programming 166

private boolean
validate(Node pred,

Node curr) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;
}
return false;

}

Validation

Begin at the
beginning

Art of Multiprocessor Programming 167

private boolean
validate(Node pred,

Node curr) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;
}
return false;

}

Validation

Search range of keys

Art of Multiprocessor Programming 168

private boolean
validate(Node pred,

Node curr) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;
}
return false;

}

Validation

Predecessor reachable

Art of Multiprocessor Programming 169

private boolean
validate(Node pred,

Node curr) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;
}
return false;

}

Validation

Is current node next?

Art of Multiprocessor Programming 170

private boolean
validate(Node pred,

Node curr) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;
}
return false;

}

Validation
Otherwise move on

Art of Multiprocessor Programming 171

private boolean
validate(Node pred,

Node curr) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;
}
return false;

}

Validation
Predecessor not reachable

Art of Multiprocessor Programming 172

Remove: searching
public boolean remove(Item item) {
int key = item.hashCode();
retry: while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)

break;
pred = curr;
curr = curr.next;
} …

Art of Multiprocessor Programming 173

public boolean remove(Item item) {
int key = item.hashCode();
retry: while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;
pred = curr;
curr = curr.next;
} …

Remove: searching

Search key

Art of Multiprocessor Programming 174

public boolean remove(Item item) {
int key = item.hashCode();
retry: while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;
pred = curr;
curr = curr.next;
} …

Remove: searching

Retry on synchronization conflict

Art of Multiprocessor Programming 175

public boolean remove(Item item) {
int key = item.hashCode();
retry: while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;
pred = curr;
curr = curr.next;
} …

Remove: searching

Examine predecessor and current nodes

Art of Multiprocessor Programming 176

public boolean remove(Item item) {
int key = item.hashCode();
retry: while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;
pred = curr;
curr = curr.next;
} …

Remove: searching

Search by key

Art of Multiprocessor Programming 177

public boolean remove(Item item) {
int key = item.hashCode();
retry: while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;
pred = curr;
curr = curr.next;
} …

Remove: searching

Stop if we find item

Art of Multiprocessor Programming 178

public boolean remove(Item item) {
int key = item.hashCode();
retry: while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;
pred = curr;
curr = curr.next;
} …

Remove: searching

Move along

Art of Multiprocessor Programming 180

Remove Method
try {
pred.lock(); curr.lock();
if (validate(pred,curr) {
if (curr.item == item) {
pred.next = curr.next;
return true;
} else {
return false;
}}} finally {

pred.unlock();
curr.unlock();

}}}

Art of Multiprocessor Programming 181

try {
pred.lock(); curr.lock();
if (validate(pred,curr) {
if (curr.item == item) {
pred.next = curr.next;
return true;
} else {
return false;
}}} finally {

pred.unlock();
curr.unlock();

}}}

Remove Method

Always unlock

Art of Multiprocessor Programming 182

try {
pred.lock(); curr.lock();
if (validate(pred,curr) {
if (curr.item == item) {
pred.next = curr.next;
return true;
} else {
return false;
}}} finally {

pred.unlock();
curr.unlock();

}}}

Remove Method

Lock both nodes

Art of Multiprocessor Programming 183

try {
pred.lock(); curr.lock();
if (validate(pred,curr) {
if (curr.item == item) {
pred.next = curr.next;
return true;
} else {
return false;
}}} finally {

pred.unlock();
curr.unlock();

}}}

Remove Method

Check for synchronization
conflicts

Art of Multiprocessor Programming 184

try {
pred.lock(); curr.lock();
if (validate(pred,curr) {
if (curr.item == item) {
pred.next = curr.next;
return true;
} else {
return false;
}}} finally {

pred.unlock();
curr.unlock();

}}}

Remove Method

target found,
remove node

Art of Multiprocessor Programming 185

try {
pred.lock(); curr.lock();
if (validate(pred,curr) {
if (curr.item == item) {
pred.next = curr.next;
return true;
} else {
return false;
}}} finally {

pred.unlock();
curr.unlock();

}}}

Remove Method

target not found

3. Code review:

 Add:

public boolean add(T item) {

 int key = item.hashCode();

 while (true) {

 Entry pred = this.head;

 Entry curr = pred.next;

 while (curr.key <= key) {

 pred = curr; curr = curr.next;

 }

 pred.lock(); curr.lock();

Search the list from
the beginning each

time, until validation
succeeds

try {

 if (validate(pred, curr)) {

 if (curr.key == key) {

 return false;

 } else {

 Entry entry = new Entry(item);

 entry.next = curr;

 pred.next = entry;

 return true;

 }

 }

 } finally {

 pred.unlock(); curr.unlock();

 }

 }

 }

If validation succeeds
Attempt Add

Continued:

3. Optimistic

3. Code review:

 Contains:

 public boolean contains(T item) {

 int key = item.hashCode();

 while (true) {

 Entry pred = this.head;

 Entry curr = pred.next;

 while (curr.key < key) {

 pred = curr; curr = curr.next;

 }

 try {

 pred.lock(); curr.lock();

 if (validate(pred, curr)) {

 return (curr.key == key);

 }

 } finally {

 pred.unlock(); curr.unlock();

 }

 }

 }

Search the list from
the beginning each

time, until validation
succeeds

If validation succeeds
Return the result

3. Optimistic

4. Methods properties:

• Assuming fair scheduler. Even if all the lock

implementations are Starvation free. We will
show a scenario in which the methods Remove /
Add / Contains do not return.

• And so our implementation won’t be starvation
free.

3. Optimistic

4. Methods properties:

• Assuming Thread A operation is Remove(d) /

Add(c) / Contains(c).

• If the following sequence of operations will
happen:

3. Optimistic

d e a b

4. Methods properties:

The sequence:

• 1. Thread A will find b.

• 2. Thread B will remove b.

• 3. The validation of thread A will fail.

3. Optimistic

The thread call to the
function won’t return!

d e a b

• 4. Thread C will add b.

 now go to 1.

5. Advantages / Disadvantages:

Advantages:

 - Limited hot-spots

• Targets of add(), remove(), contains().

• No contention on traversals.

- Much less lock acquisition/releases.

– Better concurrency.

Disadvantages:

 - Need to traverse list twice!

 - Contains() method acquires locks.

3.Optimistic

5. Advantages / Disadvantages:

3.Optimistic

• Optimistic is effective if:

– The cost of scanning twice without locks is less
than the cost of scanning once with locks

• Drawback:

– Contains() acquires locks. Normally, about 90%
of the calls are contains.

6. Running times:

 Speed up

0

5

10

15

20

25

30

4 8 12 16 20 24 28 32

No. Threads

S
e
c
o

n
d

s 2000 max
items in list

20000 max
items in list

3. Optimistic

6. Running times:

 Speed up

max of 2000 items

0

5

10

15

20

25

4 8 12 16 20 24 28 32

No. Threads

S
e
c
o

n
d

s Fine List

Coarse
Grained

Optimistic

3. Optimistic

6. Running times:

 Speed up

max of 20000 items

0

10

20

30

40

50

4 8 12 16 20 24 28 32

No. Threads

S
e
c
o

n
d

s Fine List

Coarse
Grained

Optimistic

3. Optimistic

4. Lazy

1. Describing the algorithm:

 Validate:

– Pred is not marked as deleted.

– Curr is not marked as deleted.

– Pred points to curr.

4. Lazy

1. Describing the algorithm:

 Remove(x):

• Find the node to remove.

• Lock pred and curr.

• Validate. (New validation!)

• Logical delete

– Marks current node as removed (new!).

• Physical delete

– Redirects predecessor’s next.

4. Lazy

1. Describing the algorithm:

 Add(x):

• Find the node to remove.

• Lock pred and curr.

• Validate. (New validation!)

• Physical add

– The same as Optimistic.

4. Lazy

1. Describing the algorithm:

 Contains(x):

• Find the node to remove without locking!

• Return true if found the node and it isn’t marked
as deleted.

• No locks!

a a b c d

4. Lazy

1. Describing the algorithm:

• Remove(c):

c a a b d

Present in list

4. Lazy

1. Describing the algorithm:

• Remove(c):

1. Find the node

c a a b d

Present in list

4. Lazy

1. Describing the algorithm:

• Remove(c):

2. lock

c a a b d

Present in list

4. Lazy

1. Describing the algorithm:

• Remove(c):

3. Validate

c a a b d

Set as marked

4. Lazy

1. Describing the algorithm:

• Remove(c):

4. Logically delete

a a b c d

Pred.next = curr.next

4. Lazy

1. Describing the algorithm:

• Remove(c):

5. Physically delete

a a b d

Cleaned

4. Lazy

1. Describing the algorithm:

• Remove(c):

5. Physically delete

4. Lazy

1. Describing the algorithm:

Given the Lazy Synchronization algorithm.

What else should we change?

4. Lazy

1. Describing the algorithm:

• New Abstraction map!

• S(head) =

– { x | there exists node a such that

• a reachable from head and

• a.item = x and

• a is unmarked

– }

Why do we need
to Validate?

2. Explaining why every step is needed.

4. Lazy

• First: Why do we need to validate that pred Still
points to curr?

• The same as in Optimistic:

• Thread A removes(d).

• Then thread A found b, before A locks. Another
thread adds(c).
– c and d will be removed instead of just d.

2. Explaining why every step is needed.

4. Lazy

b d e a

• Second: Why do we need to validate that pred
and curr aren’t marked logically removed?

• To make sure a thread hasn’t removed them
between our find and our lock.

• The same scenario we showed for validating that
pred is still accessible from head holds here:
– After thread A found b, before A locks. Another

thread removes b. (our operation won’t take place).

2. Explaining why every step is needed.

4. Lazy

d e b a

3. Code review:

 Add:

 public boolean add(T item) {

 int key = item.hashCode();

 while (true) {

 Node pred = this.head;

 Node curr = head.next;

 while (curr.key < key) {

 pred = curr; curr = curr.next;

 }

 pred.lock();

 try {

 curr.lock();

Search the list from
the beginning each

time, until validation
succeeds

 try {

 if (validate(pred, curr)) {

 if (curr.key == key) {

 return false;

 } else {

 Node Node = new Node(item);

 Node.next = curr;

 pred.next = Node;

 return true;

 }

 }

 } finally {

 curr.unlock();

 }

 } finally {

 pred.unlock();

 }

 }

 }

If validation succeeds
Attempt Add

Continued:

4. Lazy

3. Code review:

 Remove:

 public boolean remove(T item) {

 int key = item.hashCode();

 while (true) {

 Node pred = this.head;

 Node curr = head.next;

 while (curr.key < key) {

 pred = curr; curr = curr.next;

 }

 pred.lock();

 try {

 curr.lock();

 try {

Search the list from
the beginning each

time, until validation
succeeds

 try{

 if (validate(pred, curr)) {

 if (curr.key != key) {

 return false;

 } else {

 curr.marked = true;

 pred.next = curr.next;

 return true;

 }

 }

 } finally {

 curr.unlock();

 }

 } finally {

 pred.unlock();

 }

 }

 }

Validation

Continued:

4. Lazy

Logically remove

Physically remove

3. Code review:

 Contains:

 public boolean contains(T item) {

 int key = item.hashCode();

 Node curr = this.head;

 while (curr.key < key)

 curr = curr.next;

 return curr.key == key && !curr.marked;

 }

Check if its there
and not marked

4. Lazy

No Lock!

4. Methods properties:

Remove and Add:

• Assuming fair scheduler. Even if all the lock
implementations are Starvation free. The same
scenario we showed for optimistic holds here.

• (only here the validation will fail because the
node will be marked and not because it can’t be
reached from head)

• And so our implementation won’t be starvation
free.

4. Lazy

4. Methods properties:

But… Contains:

• Contains does not lock!

• In fact it isn’t dependent on other threads to
work.

• And so… Contains is Wait-free.

• Do notice that other threads can’t increase the
list forever while the thread is in contains
because we have a maximum size to the list
(<tail).

4. Lazy

5. Advantages / Disadvantages:

• Advantages:

– Contains is Wait-free. Usually 90% of the calls!

– Validation doesn’t rescan the list.

• Drawbacks:

– Failure to validate restarts the function call.

– Add and Remove use locks.

Lock-free implementation

4. Lazy

6. Running times:

 Speed up

0

2

4

6

8

10

4 8 12 16 20 24 28 32

No. Threads

S
e
c
o

n
d

s 2000 max
items in list

20000 max
items in list

4. Lazy

6. Running times:

 Speed up

max of 2000 items

0

5

10

15

20

25

4 8 12 16 20 24 28 32

No. Threads

S
e
c
o

n
d

s

Fine List

Coarse
Grained

Optimistic

Lazy

4. Lazy

6. Running times:

 Speed up

max of 20000 items

0

10

20

30

40

50

4 8 12 16 20 24 28 32

No. Threads

S
e
c
o

n
d

s

Fine List

Coarse
Grained

Optimistic

Lazy

4. Lazy

Optimistic lock-free
Concurrency

Pessimistic Optimistic

 lock x;

 x++;

 unlock x;

 int t;

 do {

 t = x;

 } while (!CAS(&x, t, t+1))

CAS(&x,a,b) = if *x = a then *x = b return true else return false

Art of Multiprocessor Programming 227

Reminder: Lock-Free Data
Structures

• No matter what …
– Guarantees minimal progress in any

execution
– i.e. Some thread will always complete a

method call
– Even if others halt at malicious times
– Implies that implementation can’t use locks

Art of Multiprocessor Programming 228

Lock-free Lists

• Next logical step
– Wait-free contains()
– lock-free add() and remove()

• Use only compareAndSet()
– What could go wrong?

Art of Multiprocessor Programming 229

a 0 0 0a b c 0e1c

Logical Removal

Physical RemovalUse CAS to verify pointer
is correct

Not enough!

Lock-free Lists

Art of Multiprocessor Programming 230

Problem…

a 0 0 0a b c 0e1c

Logical Removal

Physical Removal
0d

Node added

Art of Multiprocessor Programming 231

The Solution: Combine Bit and
Pointer

a 0 0 0a b c 0e1c

Logical Removal =
Set Mark Bit

Physical
Removal
CAS

0d

Mark-Bit and Pointer
are CASed together
(AtomicMarkableReference)

Fail CAS: Node not
added after logical
Removal

Art of Multiprocessor Programming 232

Solution

• Use AtomicMarkableReference
• Atomically

– Swing reference and
– Update flag

• Remove in two steps
– Set mark bit in next field
– Redirect predecessor’s pointer

Art of Multiprocessor Programming 233

Marking a Node

• AtomicMarkableReference class
– Java.util.concurrent.atomic package

address F

mark bit

Reference

Art of Multiprocessor Programming 234

Extracting Reference & Mark

Public Object get(boolean[] marked);

Art of Multiprocessor Programming 235

Extracting Reference & Mark

Public Object get(boolean[] marked);

Returns
reference

Returns mark at
array index 0!

Art of Multiprocessor Programming 236

Extracting Mark Only

public boolean isMarked();

Value of
mark

Art of Multiprocessor Programming 237

Changing State

Public boolean compareAndSet(
Object expectedRef,
Object updateRef,
boolean expectedMark,
boolean updateMark);

Art of Multiprocessor Programming 238

Changing State

Public boolean compareAndSet(
Object expectedRef,
Object updateRef,
boolean expectedMark,
boolean updateMark);

If this is the current
reference …

And this is the
current mark …

Art of Multiprocessor Programming 239

Changing State

Public boolean compareAndSet(
Object expectedRef,
Object updateRef,
boolean expectedMark,
boolean updateMark);

…then change to this
new reference …

… and this new
mark

Art of Multiprocessor Programming 240

Changing State

public boolean attemptMark(
Object expectedRef,
boolean updateMark);

Art of Multiprocessor Programming 241

Changing State

public boolean attemptMark(
Object expectedRef,
boolean updateMark);

If this is the current
reference …

Art of Multiprocessor Programming 242

Changing State

public boolean attemptMark(
Object expectedRef,
boolean updateMark);

.. then change to
this new mark.

bCAS

Art of Multiprocessor Programming 243

Removing a Node

a c d

remove
c

Art of Multiprocessor Programming 244

Removing a Node

a b d

remove
b

remove
c

c

failed

CAS CAS

Art of Multiprocessor Programming 245

Removing a Node

a b d

remove
b

remove
c

c

Art of Multiprocessor Programming 246

Removing a Node

a d

remove
b

remove
c

Art of Multiprocessor Programming 247

Traversing the List

• Q: what do you do when you find a
“logically” deleted node in your path?

• A: finish the job.
– CAS the predecessor’s next field
– Proceed (repeat as needed)

Art of Multiprocessor Programming 248

Lock-Free Traversal
(only Add and Remove)

a b c d
CAS

Uh-oh

pred currpred curr

Art of Multiprocessor Programming 249

The Window Class

class Window {
public Node pred;
public Node curr;
Window(Node pred, Node curr) {
this.pred = pred; this.curr = curr;

}
}

Art of Multiprocessor Programming 250

The Window Class

class Window {
public Node pred;
public Node curr;
Window(Node pred, Node curr) {
this.pred = pred; this.curr = curr;

}
}

A container for pred
and current values

Art of Multiprocessor Programming 251

Using the Find Method

Window window = find(head, key);
Node pred = window.pred;
curr = window.curr;

Art of Multiprocessor Programming 252

Using the Find Method

Window window = find(head, key);
Node pred = window.pred;
curr = window.curr;

Find returns window

Art of Multiprocessor Programming 253

Using the Find Method

Window window = find(head, key);
Node pred = window.pred;
curr = window.curr;

Extract pred and curr

Art of Multiprocessor Programming©
Herlihy-Shavit 2007

254

The Find Method

Window window = find(item);

At some instant,

pred curr succ

item or …

Art of Multiprocessor Programming©
Herlihy-Shavit 2007

255

The Find Method

Window window = find(item);

At some instant,

pred
curr= null

succ

item not in list

Art of Multiprocessor Programming 256

Remove
public boolean remove(T item) {
Boolean snip;
while (true) {
Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {

return false;
} else {
Node succ = curr.next.getReference();
snip = curr.next.compareAndSet(succ, succ, false

true);
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false, false);

return true;
}}}

Art of Multiprocessor Programming 257

Remove
public boolean remove(T item) {
Boolean snip;
while (true) {
Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {

return false;
} else {
Node succ = curr.next.getReference();
snip = curr.next.compareAndSet (succ, succ, false,

true);
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false, false);

return true;
}}} Keep trying

Art of Multiprocessor Programming 258

Remove
public boolean remove(T item) {
Boolean snip;
while (true) {
Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {

return false;
} else {
Node succ = curr.next.getReference();
snip = curr.next.compareAndSet (succ, succ, false,

true);
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false, false);

return true;
}}} Find neighbors

Art of Multiprocessor Programming 259

Remove
public boolean remove(T item) {
Boolean snip;
while (true) {
Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {

return false;
} else {
Node succ = curr.next.getReference();
snip = curr.next.compareAndSet(succ, succ, false,

true);
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false, false);

return true;
}}} She’s not there …

Art of Multiprocessor Programming 260

Remove
public boolean remove(T item) {
Boolean snip;
while (true) {
Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {

return false;
} else {
Node succ = curr.next.getReference();
snip = curr.next.compareAndSet(succ, succ, false,

true);
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false, false);

return true;
}}}

Try to mark node as deleted

Art of Multiprocessor Programming 261

Remove
public boolean remove(T item) {
Boolean snip;
while (true) {
Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {

return false;
} else {
Node succ = curr.next.getReference();
snip = curr.next.compareAndSet(succ, succ, false,

true);
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false, false);

return true;
}}}

If it doesn’t work,
just retry, if it

does, job
essentially done

Art of Multiprocessor Programming 262

Remove
public boolean remove(T item) {
Boolean snip;
while (true) {
Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key != key) {

return false;
} else {
Node succ = curr.next.getReference();
snip = curr.next.compareAndSet(succ, succ, false,

true);
if (!snip) continue;
pred.next.compareAndSet(curr, succ, false, false);

return true;
}}}

Try to advance reference
(if we don’t succeed, someone else did or will).

a

Art of Multiprocessor Programming 263

Add
public boolean add(T item) {
boolean splice;
while (true) {

Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key == key) {

return false;
} else {
Node node = new Node(item);
node.next = new AtomicMarkableRef(curr, false);
if (pred.next.compareAndSet(curr, node, false,

false)) {return true;}
}}}

Art of Multiprocessor Programming 264

Add
public boolean add(T item) {
boolean splice;
while (true) {

Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key == key) {

return false;
} else {
Node node = new Node(item);
node.next = new AtomicMarkableRef(curr, false);
if (pred.next.compareAndSet(curr, node, false,

false)) {return true;}
}}} Item already there.

Art of Multiprocessor Programming 265

Add
public boolean add(T item) {
boolean splice;
while (true) {

Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key == key) {

return false;
} else {
Node node = new Node(item);
node.next = new AtomicMarkableRef(curr, false);
if (pred.next.compareAndSet(curr, node, false,

false)) {return true;}
}}}

create new node

Art of Multiprocessor Programming 266

Add
public boolean add(T item) {
boolean splice;
while (true) {

Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
if (curr.key == key) {

return false;
} else {
Node node = new Node(item);
node.next = new AtomicMarkableRef(curr, false);
if (pred.next.compareAndSet(curr, node, false,

false)) {return true;}
}}}

Install new node,
else retry loop

Art of Multiprocessor Programming 267

Wait-free Contains

public boolean contains(T item) {
boolean marked;
int key = item.hashCode();
Node curr = this.head;
while (curr.key < key)

curr = curr.next;
Node succ = curr.next.get(marked);
return (curr.key == key && !marked[0])

}

Art of Multiprocessor Programming 268

Wait-free Contains

public boolean contains(T item) {
boolean marked;
int key = item.hashCode();
Node curr = this.head;
while (curr.key < key)

curr = curr.next;
Node succ = curr.next.get(marked);
return (curr.key == key && !marked[0])

}

Only diff is that we
get and check

marked

Art of Multiprocessor Programming 269

Lock-free Find
public Window find(Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
retry: while (true) {

pred = head;
curr = pred.next.getReference();
while (true) {
succ = curr.next.get(marked);
while (marked[0]) {
…
}
if (curr.key >= key)

return new Window(pred, curr);
pred = curr;
curr = succ;

}
}}

Art of Multiprocessor Programming 270

Lock-free Find
public Window find(Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
retry: while (true) {

pred = head;
curr = pred.next.getReference();
while (true) {
succ = curr.next.get(marked);
while (marked[0]) {
…
}
if (curr.key >= key)

return new Window(pred, curr);
pred = curr;
curr = succ;

}
}}

If list changes
while traversed,

start over

Art of Multiprocessor Programming 271

public Window find(Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
retry: while (true) {

pred = head;
curr = pred.next.getReference();
while (true) {
succ = curr.next.get(marked);
while (marked[0]) {
…
}
if (curr.key >= key)

return new Window(pred, curr);
pred = curr;
curr = succ;

}
}}

Lock-free Find
Start looking from head

Art of Multiprocessor Programming 272

public Window find(Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
retry: while (true) {

pred = head;
curr = pred.next.getReference();
while (true) {
succ = curr.next.get(marked);
while (marked[0]) {
…
}
if (curr.key >= key)

return new Window(pred, curr);
pred = curr;
curr = succ;

}
}}

Lock-free Find

Move down the list

Art of Multiprocessor Programming 273

public Window find(Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
retry: while (true) {

pred = head;
curr = pred.next.getReference();
while (true) {
succ = curr.next.get(marked);
while (marked[0]) {
…
}
if (curr.key >= key)

return new Window(pred, curr);
pred = curr;
curr = succ;

}
}}

Lock-free Find

Get ref to successor and
current deleted bit

Art of Multiprocessor Programming 274

public Window find(Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
retry: while (true) {

pred = head;
curr = pred.next.getReference();
while (true) {
succ = curr.next.get(marked);
while (marked[0]) {
…
}
if (curr.key >= key)

return new Window(pred, curr);
pred = curr;
curr = succ;

}
}}

Lock-free Find

Try to remove deleted nodes in
path…code details soon

Art of Multiprocessor Programming 275

public Window find(Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
retry: while (true) {

pred = head;
curr = pred.next.getReference();
while (true) {
succ = curr.next.get(marked);
while (marked[0]) {
…
}
if (curr.key >= key)

return new Window(pred, curr);
pred = curr;
curr = succ;

}
}}

Lock-free Find

If curr key that is greater or
equal, return pred and curr

Art of Multiprocessor Programming 276

public Window find(Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
retry: while (true) {

pred = head;
curr = pred.next.getReference();
while (true) {
succ = curr.next.get(marked);
while (marked[0]) {
…
}
if (curr.key >= key)

return new Window(pred, curr);
pred = curr;
curr = succ;

}
}}

Lock-free Find

Otherwise advance window and
loop again

Art of Multiprocessor Programming 277

Lock-free Find

retry: while (true) {
…
while (marked[0]) {

snip = pred.next.compareAndSet(curr,
succ, false, false);

if (!snip) continue retry;
curr = succ;
succ = curr.next.get(marked);

}
…

Art of Multiprocessor Programming 278

Lock-free Find

retry: while (true) {
…
while (marked[0]) {

snip = pred.next.compareAndSet(curr,
succ, false, false);

if (!snip) continue retry;
curr = succ;
succ = curr.next.get(marked);

}
…

Try to snip out node

Art of Multiprocessor Programming 279

Lock-free Find

retry: while (true) {
…
while (marked[0]) {

snip = pred.next.compareAndSet(curr,
succ, false, false);

if (!snip) continue retry;
curr = succ;
succ = curr.next.get(marked);

}
…

if predecessor’s next field changed,
retry whole traversal

Art of Multiprocessor Programming 280

Lock-free Find

retry: while (true) {
…
while (marked[0]) {

snip = pred.next.compareAndSet(curr,
succ, false, false);

if (!snip) continue retry;
curr = succ;
succ = curr.next.get(marked);

}
…

Otherwise move on to check
if next node deleted

Performance

• Different list-based set implementaions
• 16-node machine
• Vary percentage of contains() calls

Art of Multiprocessor Programming 281

Art of Multiprocessor Programming 282

High Contains Ratio

Lock-free
Lazy list

Coarse Grained
Fine Lock-coupling

Art of Multiprocessor Programming 283

Low Contains Ratio

Lock-free

Lazy list

Coarse Grained
Fine Lock-coupling

Art of Multiprocessor Programming 284

As Contains Ratio Increases

Lock-free
Lazy list

Coarse Grained
Fine Lock-coupling

% Contains()

Art of Multiprocessor Programming 285

Summary

• Coarse-grained locking
• Fine-grained locking
• Optimistic synchronization
• Lazy synchronization
• Lock-free synchronization

Art of Multiprocessor Programming 286

“To Lock or Not to Lock”

• Locking vs. Non-blocking:
– Extremist views on both sides

• The answer: nobler to compromise
– Example: Lazy list combines blocking add()

and remove()and a wait-free contains()
– Remember: Blocking/non-blocking is a property

of a method

An Optimistic Lock-free Stack

pop(){

1 local done, next, t;

2 done = false;

3 while (!done) {

4 t = Top;

5 if (t==null) return null;

6 next = t.Next;

7 done = CAS(&Top, t, next);

8 }

9 return t;

push(x){

10 local done, t;

11 done = false;

12 while(!done) {

13 t = Top;

14 x.Next = t;

15 done = CAS(&Top, t, x);

16 }

17 return true;
Bug#1: t might be a dangling
pointer

Bug#2: ABA problem leads to corrupted
stacks

…
n Nex

t
n Next

Top

ABA Problem
Threads T1 and T2 are interleaved as follows:

A

C

B

Top

t

next

B

C next
(removed)

Top

A

B

t

Top

C next
(removed)

Timeline

T1:

pop()

{

 t = Top

 next = t.Next

 interrupted

 resumes

CAS(&Top,t,next)

succeeds

stack corrupted

T2:

 a = pop();

 c = pop();

 push(a);

Summary

Our winner: Optimistic Lock-free.

Second best: Lazy.

Third: Optimistic.

Fourth: Fine-Grained.

Last: Coarse-Grained.

 ?

Summary

Answer: No.

Choose your implementation carefully
based on your requirements.

Summary

• Concurrent programming is hard.

• Concurrency is error-prone.

• Formal method is necessary.

