Introduction to Concurrency
and Multicore Programming

Slides adapted from
Art of Multicore Programming
by Herlihy and Shavit



Overview

Introduction
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Linearizability
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— Linked-List Set
— Lock-free Stack

Summary



What is Concurrency?

A property of systems in which several
processes or threads are executing at the
same time.
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The Uniprocessor is Vanishing

cpu

‘ memory ‘




The Shared Memory Multiprocessor
(SMP)

& 5\

‘ shared memory ‘




Your New Desktop: The Multicore
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All on the @ Eas  Sun
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Why do we care?

 Time no longer cures software bloat
— The "free ride" is over

« When you double your program's path
length
—You can't just wait 6 months

— Your software must somehow exploit twice
as much concurrency



Traditional Scaling Process

Speedup 18 M
0X

User code

Traditional i
Uniprocessor

Time: Moore's law




Multicore Scaling Process

Speedup 1 8x M

User code

Multicore I I I I

Unfortunately, not so simple...




Real-World Scaling Process

Speedup
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Parallelization and Synchronization
require great care...




Sequential Computation

thread




Concurrent Computation




Asynchrony

— Page faults (/ong)
— Scheduling quantum used up (really long),
/



Model Summary

Multiple threads
Single shared memory
Objects live in memory

Unpredictable asynchronous delays



Multithread Programming

Java, C#, Pthreads
Windows Thread API
OpenMP

Intel Parallel Studio Tool Kits



Java Thread

= java.lang.Thread

class MyThread extends Thread{
@Override
public void run(){

.
}

public static void main(String args[]){
MyThread thread = new MyThread();
thread.start();

try {
thread.join();

}
catch (InterruptedException e) { };

}



Concurrency Idea

* Challenge
— Print primes from 1 1o 1010

« Given
— Ten-processor multiprocessor
— One thread per processor

* Goal
— Get ten-fold speedup (or close)



Load Balancing

1 10° 2:10° ..
| | | | | | |

I I I I I I I I
Po P ...
* Split the work evenly
 Each thread tests range of 10°



Procedure for Thread i

void primePrint {
int 1 = ThreadID.get(); // IDs 1n {0..9}
for (3 = 1*10°+1, j<(+1)*10°%; j++) {
it (isPrime(j))
print(3);



Issues

* Higher ranges have fewer primes
 Yet larger numbers harder to test

 Thread workloads
— Uneven
— Hard to predict



Issues

Higher ranges have fewer primes
Yet larger numbers harder to test

Thread workloads
— Uneven
— Hard to predict

Need dynamic load bgdlancing




Shared Counter

18 each thread

Q takes a number
717§

%




Procedure for Thread /

int counter = new Counter(l);

void primePrint {
long j = 0;
while (j < 1019 {
j = counter.getAndIncrement();
if (isPrime(j))

print(j);



Procedure for Thread /

[Counter counter = new Counter(l);]

void primePrint {
long j = 0;
while (j < 1010) {
j = counter.getAndIncrement();

if (isPrime(j)) Shared counter
print(3); object



Where Things Reside
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Counter Implementation

public class Counter {
private long value;

public long getAndIncrement() {
return value++;

}
}



Counter Implementation

public class Counter {
private long value;

public long getAndIncrem--
return value++;: e e



What It Means

public class Counter {
private long value;

public long getAndIncrement() {
return value++;

}
}



What It Means

public class Counter {
private long value;

public long getAndIncrement() {

[ return va1ue++;! temp = value;
} value = value + 1;

} return temp;




Not so good...
Value.. . . . .

l l
l
read write read write
1 2 2 3




Is this problem inherent?

write

write read
If we could only glue reads and writes...




Challenge

public class Counter {
private long value;

public long getAndIncrement() {

temp = value;
value = temp + 1;
return temp;

}
}



Challenge

public class Counter {
private long value;

public long getAndIncrement() {

temp = value;
[va1ue = temp + 1;
return temps
} Make these steps

} atomic (indivisible)



Hardware Solution

public class Counter {
private long value;

public long getAndIncrement() {
temp = value;
va1ue = temp + 1;
return tem

ReadModifyWrite()
instruction




An Aside: Java™

public class Counter {
private long value;

public long getAndIncrement() {

temp
value

value;
temp + 1;

return temp;

}
}



An Aside: Java™

public class Counter {
private long value;

public long getAndIncrement() {
" synchronized {

temp = value;
value = temp + 1;
}
m
} Synchronized block

}



An Aside: Java™

public class Counter {
private long value;

Mutual Exclusion

public long getAndIncremen

synchronized

temp value;
value

temp + 1;
return temp;
}
}




Mutual Exclusion

The problem of ensuring that no two
processes or threads can be in their
critical section at the same time.



Events

* An event ag of thread A is
- Instantaneous
- No simultaneous events (break ties)

|

R e



Threads

» A thread A is (formally) a sequence
ay, G4, ... of events

- "Trace" model
- Notation: a; & q, indicates order

Ao a, a

e —— o



Example Thread Events

» Assign to shared variable
» Assign to local variable

* Invoke method

* Return from method

* Lots of other things ...



Threads are State Machines

Events are
transitions



States

- Thread State

- Program counter
- Local variables

- System state
- Object fields (shared variables)
- Union of thread states



Concurrency

* Thread A
sz o 1



Concurrency

* Thread A
sz o 1
* Thread B

_




Interleavings

- Events of two or more threads
- Interleaved
- Not necessarily independent (why?)

1 i



Tntervals

* An /nterval Ap=(ay,a;) is
- Time between events a;and q,

| |

M -




Intervals may Overlap




Intervals may be Disjoint




Precedence

Interval A, precedes interval B,




Precedence

=N
SR S
* Notation: Ap> B,

* Formally,
- End event of A, before start event of B,

- Also called “happens before" or
"precedes”



Precedence Ordering

o

i

- Never true that A> A
- If A>Bthen not true that B>A
- If ASB& B>Cthen A>C

* Funny thing: A >B & B A might both
be falsel




Partial Orders

(you may know this already)

* Irreflexive:

- Never true that A> A

* Antisymmeftric:

- If A> Bthen not true that B> A

* Transitive.

-IfA>B&B>CthenASC



Total Orders

(you may know this already)

+ Also

- Irreflexive

- Antisymmetric
- Transitive

+ Except that for every distinct A, B,
- Either A>BorBa> A



Implementing a Counter

public class Counter {
private long value;

public long getAndIncrement() {

temp = value;
value = temp + 1;
return temps
1 Make these steps

} indivisible using
locks




Locks (Mutual Exclusion)

public interface Lock {
public void lock();

public void unlock();
}



Locks (Mutual Exclusion)

public interface Lock {

[public void Tock(); [~ acquire lock

public void unlock();
}




Locks (Mutual Exclusion)

public interface Lock {

[pub'h'c void Tock(Q); j; acquire lock
Lpub'h'c void unlock() ;]> release lock




Using Locks

public class Counter {
private long value;
private Lock Tlock;
public long getAndIncrement() {
lock.lock();
try {
int temp = value;
value = value + 1;
} finally {
Tock.unlock(Q);
}

return temp;

3}



Using Locks

public class Counter {
private long value;
private Lock Tock;
public long getAndIncrement() {
lock.lock();

~——=— acquire Lock

int temp = value;

value = value + 1;

} finally {
lock.unlock();

}

return temp,

3}



Using Locks

public class Counter {
private long value;
private Lock lock;
public long getAndIncrement() {
lTock.lock(Q);
try {
int temp = value;
value = value + 1;

[} finally {

Tock.unlockO) Release lock

} (no matter what)
return temp;

3}




Using Locks

public class Counter {
private long value;
private Lock Tock;
public long getAndIncrement() {
lock.lock();

: Critical
int temp = value; :
value = value + 1; ]>5€CT'°n
fmatrty <
lock.unlock();

}

return temp,;

3}



Mutual Exclusion

- Let €Sk ¢ be thread i's k-th critical
section execution



Mutual Exclusion

- Let €Sk ¢ be thread i's k-th critical
section execution

* And CS;™ @ be thread j's m-th critical
section execution



Mutual Exclusion

- Let €Sk ¢ be thread i's k-th critical
section execution

* And CS;" @ be j's m-th execution
* Then either

P @or e



Mutual Exclusion

- Let €Sk ¢ be thread i's k-th critical
section execution

* And CS;" @ be j's m-th execution
* Then either

@ or e

[%ik-) csm |




Mutual Exclusion

- Let €Sk ¢ be thread i's k-th critical
section execution

* And CS;" @ be j's m-th execution
* Then either

" & or ¢




®

Deadlock-Free

- If some thread calls lock()
- And never returns

- Then other threads must complete lock()
and unlock() calls infinitely often

+ System as a whole makes progress
- Even if individuals starve



Starvation-Free

®

- If some thread calls lock()
- It will eventually return

» Individual threads make progress



Two-Thread Conventions

class .. implements Lock {

// thread-local index, 0 or 1
public void lock() {

int 1 = ThreadID.get();

int J=1-1;



Two-Thread Conventions

class .. implements Lock {

// thread-local index, 0 or 1
public void lock() 1
[int i = Threadip.get();
int j =1-1;
}
}

Henceforth: i is current
thread, j is other thread



LockOne

class LockOne implements Lock {
private boolean[] flag =
new boolean[2];
public void lock() {
flag[i] = true;
while (flag[jl) {}
}



LockOne

class LockOne implements Lock {
private boolean[] flag =
new boolean[2]:

public void lock() {
|flag[i] = true%====~.~~
while (flag[jl) {}

}

Set my flag



LockOne

while (flag[j]) {} Set my flag

Wait for other
flag to go false



LockOne Satisfies Mutual
Exclusion

+ Assume CS,J overlaps CSgk

» Consider each thread's last (j-th
and k-th) read and write in the
lock() method before entering

- Derive a contradiction



From the Code

» write,(flag[A]=true) >
read,(flag[B]==false) >CS,

+ writeg(flag[B]=true) ->
readg(flag[A]==false) > CSg

class Lockone implements Lock {

public void TockO {
flag[i] = true;
while (flag[j]) {}
}




From the Assumption

» read,(flag[B]==false) >
writeg(flag[B]=true)

- ready(flag[A]==false) >
write(flag[B]=true)



Combining

* Assumptions:
- read,(flag[B]==false) 2> writey(flag[B]=true)
- readp(flag[A]==false) > write,(flag[A]=true)

* From the code
- write,(flag[A]=true) 2> read,(flag[B]==false)
- writeg(flag[B]=true) > read;(flag[A]==false)



Combining

- read,(flag[B]==false) > writey(flag[B]=true)

- writeg(flag[B]=true) > read;(flag[A]==false)



Combining

- read,(flag[B]==false) > writey(flag[B]=true)
ready(flag[A]==false) > write,(flag[A]=true)

- writeg(flag[B]=true) > read;(flag[A]==false)



Combining

- read,(flag[B]==false) > writey(flag[B]=true)
,«==pready(flag[A]==false) > write,(flag[Al=true)

4
lllllllllllllllllll ann?®

. - wriV}(Flag[A]ﬂrue) -~ read,(flag[B]==false)
‘\ - writep(flag[B]=true) > readg(flag[A]==false)



Combining

- read,(flag[B]==false) > writey(flag[B]=true)
,«==pready(flag[A]==false) > write,(flgg[Al=true)

|

= - wm"r;;(flag[A]ﬂrue) > ;'-ea-d-;(flag[B]xfalse)
. - writeg(flag[B]=true) > readgy(flag[A]==false)



Combining

- rede iren(flag[B]=1rue)
Wﬂmn%( lag[A]=true)

- writg, (flag[A]=true) = read,(flaf[B]==false)
~ wr'i’r 2adp(flag[A]==false)







Deadlock Freedom

- LockOne Fails deadlock-freedom
- Concurrent execution can deadlock

flag[i] = true; flag[j] = true;
while (flag[j1){} while (flag[il){}

- Sequential executions OK



LockTwo

public class LockTwo implements Lock {
private int victim;

public void lock() {

victim = 1;

while (victim == i) {};

}

public void unlock() {}
}



LockTwo

public class LockTwo implements Lock {

private int victim;
public void Jock® 4 et :Thi" go
Irs

victim = 1;
' et == 1) {};
}

public void unlock() {}
}




LockTwo

public class LockTwo implements Lock {
private int victim; Wait for
LI G I8 (O permission
V = 7;

while (victim == i) {};

public void unlock() {}
}



LockTwo

public class Lock2 implements Lock {

private int victim;

public void lock() { Nothing to do

victim = 1;

while (victim == i) {};
}

[pub11c void unlock() {}




LockTwo Claims

- Satisfies mutual exclusion

- If ’rhr'e.ad 1. in CS | public void LockTwo() {
- Thenvictim == j victim = 1;

- Cannot be both 0 and 1 }Whﬂe (victim == 1) {};

- Not deadlock free

- Sequential execution deadlocks
- Concurrent execution does not



Peterson's Algorithm

public void lock() {

flag[1] = true;

victim = 1;

while (flag[j] & & victim == 1) {};
¥

public void unlock() {

flag[1] = false;

¥



Peterson's Algorithm

Announce I'm

public void 1Q£5£?=f”———linter68ted
[fTag[i] = true;

victim = 1;

while (flag[j] && victim == 1) {};
}

public void unlock() {

flag[i] = false;

}




Peterson's Algorithm

Announce I'm
interested

Lrue; Defer to other

flag[1]
1Cctim




Peterson's Algorithm

Announce I'm
interested

Defer to other

public void ]ac
flag[i1] =

&& victim == 1) {};]

} T~
public void unlock() { Wait while other
flag[i] = false; interested & I'm

¥ the victim



Peterson's Algorithm

Announce I'm
interested

Defer to other

&& victim == i) {};]

Wait while other

}[ﬂ ag[i] = \fiﬁ] interested & I'm
No Tonger the victim

interested




Mutual Exclusion

flag[i] true;
victim = 1;
while (flag[j] && victim == 1) {};

« If thread O in - If thread 1 in
critical section, critical section,
- flag[0]=true, - flag[1]=true,
—victim = 1 -victim =0

Cannot both be true



Deadlock Free

public void lock() {

while (flag[j] && victim == i) {};

- Thread blocked

- only at while loop
- only if it is the victim

* One or the other must not be the victim



Starvation Free

* Thread 1 blocked
only if j repeatedly public void TockO) {

flag[i] = :
re-enters so that vii?:i[:n] 319?

while (flag[j] && victim == 1) {};
flag[j] == true and ?

victim == 1 public void unlock() {
+ When j re-enters , flaoli] = false;

- it sets victim to j.

- So 1 getsin



Other Lock Algorithms

* The Filter Algorithm for # Threads
» Bakery Algorithm

Theorem At least N MRSW (multi-reader/single-




FIFO Queue: Enqueue Method

| gqeng (@




FIFO Queue: Dequeue Method
__ q.deq()/ ®

/[ele]e
L ud




A Lock-Based Queue

class LockBasedQueue<T> {
int head, tail;
T[] items;
Lock lock;
public LockBasedQueue(int capacity) {
head = O; tail = O;
lock = new ReentrantLock();
items = (T[]) new Object[capacity];
}



A Lock-Based Queue

head tail

N 1
class LockBasedQueue<T> { EEE ZNG

0

Queue fields
protected by
single shared lock



A Lock-Based Queue

heafi tail
N
class LockBasedQueue<T> { SEalar
int head, tail; @
T[] items;
Lock lock;
bublic LockBasedQueue(int capacity) {
head = O; tail = O;
lock = new ReentrantLock();
items = (T[]) new Object[capacity]. y

Initially head = tail



Implementation: Deg

head tail

: : N 1
public T deq() throws EmptyException {capacity-1 >

lock.lock();

o A
if (tail == head)

throw new EmptyException();

T x = items[head % items.length];
head++;
return x;

} finally {
lock.unlock();

}

}

2




Implementation: Deq

head tail

Arows EmpTYEXCQPTiOn {capacity-l 2 Z1

T x = items[head\\tems.length];
head++;
refurn Xx;

} finally { Method calls

lock.unlock(): :
} mutually exclusive

}




Implementation: Deg

head tail

N 1

capacity-1 Z g
if (tail == head)
throw new EmptyException();

If queue empty
throw exception




Implementation: Deg

head

capacity- 1

0

T x = items[head % items.length];
head++;

Queue not empty:
remove item and update

head

Z

1
2

tail




Implementation: Deq

head

tail

: : ™ 1
public T deq() throws EmptyException {cupacity-L Tl

lock.lock();
& A
if (tail == head)
throw new EmptyException();

T x = items[head % items.length];

d++
l retfurn x; J\
j Tinally {
lock.unlock(); Return result
}

}

2




Implementation: Deq

head tail
public T deq() throws EmptyException {capacity-1 > /
lock.lock();
try { @
if (tail == head)
throw new EmptyException();
T x = items[head % items.length];
head++;
refurn Xx;
f‘l’m ally
lock.unlock(); J\
J
} Release lock no matter

what!



Implementation: Deg

public T deq() throws EmptyException {
lock.lock();
try {
if (tail == head)
throw new EmptyException();
T x = items[head % items.length];
head++;
return x;
} finally {
lock.unlock();
}
}




Now consider the following
implementation

* The same thing without mutual
exclusion

* For simplicity, only two threads
- One thread enq only

- The other deq only



Wait-free 2-Thread Queue

public class WaitFreeQueue {

int head = O, tail = O;
items = (T[]) new Object[capacity]:

public void eng(ITtem x) {
while (tail-head == capacity); // busy-wait
items[tail % capacity] = x; tail++;

}

public Ttem deq() {
while (tail == head); // busy-wait
Item item = items[head % capacity]; head++;
return item;

1}



Wait-free 2-Thread Queue

public class LockFreeQueue { head tail

N 1

capacity- Z 4

int head = O, tail = O;
items = (T[]) new Object[capacity];

public void eng(Item x) {
while (tail-head == capacity). // busy-wait
items[tail % capacity] = x; tail++;

}

public Item deq() {
while (tail == head);  // busy-wait
Ttem item = items[head % capacity], head++;
return item;

3}



Lock-free 2-Thread Queue

public class LockFreeQueue { head tail
N 1

capacity- Z 4

int head = O, tail = O;
items = (T[])new Object[capacity];

public void eng(Item x) {
while (tail-head == capacity); // busy-wait
[i'rems[’rail % capacity] = x; tail++;

}

public Item\deq()
while (tail 23 hgad);  // busy-v~
Item item = i'¥ems[heac

1 ueue is uj




Defining concurrent queue
implementations

* Need a way to specify a concurrent
queue object

* Need a way to prove that an
algorithm implements the object’s
specification

* Lets talk about object
specifications ...



Sequential Objects

» Each object has a state
- Usually given by a set of fields
- Queue example: sequence of items

» Each object has a set of methods
- Only way to manipulate state
- Queue example: enq and deq methods



Sequential Specifications

» If (precondition)

- the object is in such-and-such a state

- before you call the method,

* Then (postcondition)

- the method will return a particular value
- or throw a particular exception.

- and (postcondition, con’t)

- the object will be in some other state

- when the method returns,



Pre and PostConditions for
Dequeue

* Precondition:

- Queue is non-empty

* Postcondition:

- Returns first item in queue

* Postcondition:
- Removes first item in queue



Pre and PostConditions for
Dequeue

* Precondition:

- Queue is empty

* Postcondition:

- Throws Empty exception

* Postcondition:
- Queue state unchanged



What About Concurrent
Specifications ?

» Methods?
* Documentation?
» Adding new methods?



Methods Take Time

T



Methods Take Time




Methods Take Time

[ invocation
12:00

lele| |
z’f

“

Art of Multiprocessor
Programming



Methods Take Time

[invoca’rion
12:00
le[e|e]

e 8
Q
Me‘rhod call

T




Methods Take Time

[ invocation response ]
12:00 12:01
\‘\‘ o]

e s
__




Sequential vs Concurrent

+ Sequential
- Methods take time? Who knew?
- Concurrent

- Method call is not an event
- Method call is an interval.



Concurrent Methods Take
Overlapping Time

T



Concurrent Methods Take
Overlapping Time

7

V.
Method call

T



Concurrent Methods Take
Overlapping Time

Method call
s
v




Concurrent Methods Take
Overlapping Time

=22 52+

v

Method call Method call
72 <A

Method call
;

time




Sequential vs Concurrent

+ Sequential:
- Object needs meaningful state only
between method calls

- Concurrent

- Because method calls overlap, object
might never be between method calls



Sequential vs Concurrent

+ Sequential:
- Each method described in isolation

- Concurrent

- Must characterize allpossible
inferactions with concurrent calls
* What if two engs overlap?
- Two degs? eng and deq? ...



Sequential vs Concurrent

+ Sequential:
- Can add new methods without affecting
older methods

- Concurrent:

- Everything can potentially interact with
everything else



Sequential vs Concurrent

+ Sequential:
- Can add new methods without affecting
older methods

- Concurrent:
- Everything can poter
everything else

«T with



Intuitively...

public T deq() throws EmptyException {
lock.lock();
try {
if (tail == head)
throw new EmptyException();
T x = items[head % items.length];
head++;
return x;
} finally {
lock.unlock();
}
}



}

Intuitively...

rows EmptyException {

throw newNgmptyException();

T x = items[hed\ items.length];
head++;

return Xx;

—— All modifications
}'°Ck'”“'°Ck()' J of queue are done
mutually exclusive




o a1

Lets capture the idea of describing
the concurrent via the sequential

TockQ enq un'Iockj()

enqg

lock) 9-ded nlock )
i q.enq i deE

e N
Behavior is
"Sequential”




Is it really about the object?

» Each method should

— “take effect”

- Instantaneously

- Between invocation and response events

» Object is correct if this “sequential’
behavior is correct

* A linearizable object: one all of whose
possible executions are linearizable



Example

T
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Read/Write Register Example




Read/Write Register Example

write(1l) already
happened




Read/Write Register Example

yzdss

[ write(1l) already

happened




Read/Write Register Example

write(1l) already
happened

I E read(0)

|




Read/Write Register Example

write(1l) already
happened




Read/Write Register Example

2os.,

write(1l) already
happened




Read/Write Register Example

write(1l) already
happened

I E read(1)

|




Read/Write Register Example




Read/Write Register Example

i
T




Read/Write Register Example




Read/Write Register Example




Read/Write Register Example




Read/Write Register Example




Read/Write Register Example




Talking About Executions

+ Why?
- Can’t we specify the linearization point

of each operation without describing an
execution?

* Not Always

- In some cases, linearization point
depends on the execution



Formal Model of Executions

* Define precisely what we mean
- Ambiguity is bad when intuition is weak
» Allow reasoning

- Formal
- But mostly informal



Split Method Calls into Two
Events

- Invocation

- method name & args
-q.enq(x)

* Response

- result or exception

- q.enq(x) returns void
-q.deq() returns x
-q.deg() throws empty



Invocation Notation

A q.enq(x)



Invocation Notation

Eq-enq(X)

thread



Invocation Notation

E q.x)

thread method




Invocation Notation

thread method

object



Invocation Notation

thread me’rhod

object arguments



Response Notation

A q: void



Response Notation

Eq: void

thread



Response Notation

E g void
N\

thread result




Response Notation

B;(void\
N\

thread /_ result

object




History - Describing an
Execution

A q.enq(3)

A g:void

A q.enq(D)
H =

Sequence of
invocations and
responses



Definition
» Invocation & response match if

Thread Object names

hames agree agree

Q' A )
Method call
e &)

H




Object Projections

A g.enq(3)
A q:void

- Bp.enq(4)
B p:void
B q.deq()
Bqg:3



Object Projections

A g.enq(3)
A q:void



Thread Projections

A g.enq(3)
A q:void

- Bp.enq(4)
B p:void
B q.deq()
Bqg:3



Thread Projections

_ B p.enq(4)
H‘B B p:void

B q.deq()
Bqg:3



Complete Subhistory

A q.enq(3)
A g:void
|A g.enq(b)
H= Bp.enq(4
B p:voidsx
B q.deq() An invocation is
B q:3 pending if it has no

matching respnse



Complete Subhistory

A q.enq(3)
A g:void

|A g.enq(b)
H= Bp.enq(4
B p:void

B q.deq() May or may not have
B q:3 taken effect




Complete Subhistory

A q.enq(3)
A g:void
|A g.enq(b)
H= Bp.enq(4
B p:void
B q.deq() discard pending

Bq:3 invocations



Complete Subhistory

A q.enq(3)
A g:void

Complete(H) = B p.enq(4)
B p:void
B q.deq()
Bqg:3



Sequential Histories

A q.enq(3)
A q:void

B p.enq(4)
B p:void

B q.deq()
Bqg:3

A g:enq(5)



Sequential Histories

9 q.ena(3) \J> match
A g:void

B p.enq(4)

B p:void

B q.deq()

Bqg:3

A q:enq(D)




Sequential Histories

rA q. ZHQ(3) match
A g:void
B p.enq(4) match
B p:void

B q.deq()
Bqg:3
A q:enq(D)



Sequential Histories

rA q. enq(3) match
A g:void
B penq(d) match

B p:void

match
B q.deq() ]%
B g:3

A g:enq(b)



Sequential Histories

A q.enq(3)
A g:void

B p.enq(4)
B p:void

‘B q.deq()
B q:3

A q:enq(D)

match

match

match

Final pending
invocation OK



Sequential Histories

‘A q.eng(3)
A g:void
B p.enq(4)
B p:void

‘B q.deq()
Bg:3 Final pending
A q:enq(5) invocation OK




Well-Formed Histories

A q.enq(3)
B p.enq(4)
B p:void

B q.deq()
A q:void
Bqg:3



Well-Formed Histories

Per-thread projections B p.enq(4)
sequential H|B= B p:void
A g.enq(3) B q.deq()
B p.enq(4) Bg:3
B p:void
H= B q.deq()
A q:void

Bqg:3



Well-Formed Histories

Per-thread projections B p.enq(4)
sequential H|B= B p:void
A g.enq(3) B q.deq()
B p.enq(4) Bgq:3
B p:void
H= B q.deq()
A q:void
B '3 H| A= A q.enq(3)



Equivalent Histories

~

Threads see the same . |A = G|A
thing in both IB=G|B

A q.enq(3) A q.enq(3)

B p.enq(4) A q:void

B p:void G B p.enq(4)
B q.deq() ~ | B p:void
A q:void B q.deq()
Bqg:3 Bq:3




Sequential Specifications

+ A sequential specification is some way
of telling whether a

- Single-thread, single-object history

- Is legal

* For example:

- Pre and post-conditions

- But plenty of other techniques exist ...



Legal Histories

* A sequential (multi-object) history H
is legal if

- For every object x

- H|x is in the sequential spec for x



Precedence

B p.enq(4) A method call precedes
B p.void ,\ano’rher if response event
birecedes invocation event

<= =



Non-Precedence

B p.enq(4)
B p.void Some method calls
overlap one another

<Memod<cm.> S




Notation

+ Given

- History H

- method executions mgand my in H

+ We say mg =2y my, if

- mo precedesm; <) <{EEE)
* Relationmy 2> m;isa

- Partial order

- Total order if H is sequential



Linearizability

» History H is /inearizable if it can be
extended to G by

- Appending zero or more responses to
pending invocations

- Discarding other pending invocations

* So that G is equivalent to
- Legal sequential history S
- where 2, c 29



WhGT |S 96 - 95

96 = {a>c,b>c}
95 = {a>b,a>c,b>c}




Remarks

+ Some pending invocations
- Took effect, so keep them
- Discard the rest

» Condition 2, c >

- Means that S respects “real-time order”
of 6



Example

A g.enq(3)

—rom—

ujl
<B.q.enq(4)><8.q.deq(4)>: B. g.enq(6) |[||]




Example

A q.enq(3)
L..-,,...___Nmple’re this pending
invocation

Art of Multiprocessor 219
Programming



Example
.enq(3
[i?.i?ii_)Nmple’re this pending
Invocation

[ A g:void




Example

A q.enq(3)

discard this QQTQ




Example

A q.enq(3)

discard this one

<B.q.enq(4)> <B.q.deq(4)>
Art of Multiprocessor 222-

Programming




Example

A q.enq(3)




Example

A q.enq(3)

A q.enq(3)
A q:void

A q:void

<B.q.enq(4)> <B.q.deq(4)>




Example

Equivalent sequential history

A q.enq(3) \

A q.enq(3)
A g:void

A g:void




Reasoning About

tail

Linearizability: Lockin?
public T deq() throws EmptyException { = 1

lock.lock();

A
if (tail == head)

throw new EmptyException();

T x = items[head % items.length];
head++;
return x;

} finally {
lock.unlock();

}

}

capacity-1

2




Reasoning About
Linearizability: Locking

[lock.unlock():

Linearization points
are when locks are
released



More Reasoning: Wait-free

public class WaitFreeQueue { head

N
capacity-1

int head = 0O, tail = O;
items = (T[]) new Object[capacity];

public void enq(Item x) {
if (tail-head == capacity) throw
new FullException();
items[tail % capacity] = x; tail++;
}
public Item deq() {
if (tail == head) throw
new EmptyException();
Item item = items[head % capacity]; head++;
return item;

3}

o)

1

tail




More Reasoning: Wait-free

public class W- ‘eQueue { — .__I
Linearization order is

int her @ .

o RO siectic  order head and tail
\\0& @00 00( J ° . .

OGRS fields modified

w&&(\@d\ ¥ q(Ttem x) {

.ead == capacity) throw
G A0 -w FullException();

ems[tail % capacity] = x; tail++;

J
public Item deq() {

if (tail == head) throw

new EmptyException();
Item item = items[head % capacity]; head++;
return item;

3}




Linearizability: Summary

» Powerful specification tool for shared
objects

» Allows us to capture the notion of
objects being “atomic”

- Don’t leave home without it



Ordered linked list
implementation of a set

LA el el e[5> (=] ]




Defining the linked list

= {@3—»@3—»
=] )]

Sorted with Sentinel nodes
(min & max possible keys)




Defining concurrent methods
properties

« I'nvariant:

- Property that always holds.
- Established because
- True when object is created.

- Truth preserved by each method
* Each step of each method.



Defining concurrent methods
properties

* Rep-Invariant:

- The invariant on our concrete
Representation = on the list.

- Preserved by methods.
- Relied on by methods.

- Allows us to reason about each method in
isolation without considering how they
Interact.



Defining concurrent methods
properties

* Our Rep-invariant:

- Sentinel nodes
- tail reachable from head.

- Sorted
- No duplicates

» Depends on the implementation.



Defining concurrent methods
properties

» Abstraction Map:
» S(List) =
- { x | there exists a such that

* a reachable from head and
- a.lfem = X

-}

» Depends on the implementation.



Abstract Data Types

* Example:

- s(U»al bl L] ):-{ab)

- Concrete representation:

L=l 5=l 5—~(1]

+ Abstract Type:
- {a, b}



Defining concurrent methods
properties

+ Wait-free: Every call to the function
finishes in a finite number of steps.

Supposing the Scheduler is fair:

- Starvation-free: every thread calling the
method eventually returns.




Algorithms

* Next: going throw each algorithm.
- 1. Describing the algorithm.

- 2. Explaining why every step of the algorithm is
needed.

- 3. Code review.
* 4. Analyzing each method properties.
- 5. Advantages / Disadvantages.

» 6. Presenting running times for the
implementation of the algorithm.

» + Example of proving correctness for Remove(x)
in FineGrained.



0.Sequential List Based Set
Add()

(53— (e[ F——{c[3—Ed1]

Remove()

(T3—>(a] - b 3=—>(c]

240



0.Sequential List Based Set
Add()

CB—>@I3\ (c[3—{dT]

Remove()

(T3—>(a b F—{c]_



1.Course Grained

1. Describing the algorithm:
* Most common implementation

Toda/.

(I3l 3F—E[3—dD)

»+ Add(x) / Remove(x) / Contains(x):

- Lock the entire list then perform the operation.



1.Course Grained

1. Describing the algorithm:

* Most common implementation today

L gl:—]—»@D—»

* All methods perform operations on the list while
holding the lock, so the execution is essentially
sequential.



1.Course Grained

3. Code review:
Add:

public boolean add(T item) {
Node pred, curr;
int key = item.hashCode();

lock.lock();
try {
pred = head;

curr = pred.next; . . .
while currkey <key) (- Finding the place to add the item
pred = curr;
curr = curr.next;
}
if (key == curr.key) {
return false;
}else{
Node node = new Node(item);
node.next = curr; . . . . 0 5 .
pred next = node Adding the item if it wasn't already in the list
return true;
}
} finally {
lock.unlock();

}



1.Course Grained

3. Code review:
Remove:

public boolean remove(T item) {
Node pred, curr;
int key = item.hashCode();
lock.lock();
try {
pred = this.head; . . .
curr = pred.next; Flndlng the ltem
while (curr.key < key) {
pred = curr;
curr = curr.next;
}
if (key == curr.key) {
pred.next = curr.next; . .
return true; Removing the item
} else {
return false;

}
} finally {
lock.unlock();
}
}



1.Course Grained

3. Code review:
Contains:

public boolean contains(T item) {
Node pred, curr;
int key = item.hashCode();
lock.lock();
try {
pred = head; . . .
curr = pred.next; Flndlng the ltem
while (curr.key < key) {
pred = curr;
curr = curr.next;
}
return (key == curr.key);
} finally {lock.unlock();

}

Returning true if found

246



1.Course Grained

4. Methods properties:

* The implementation inherits its progress
conditions from those of the Lock, and so
assuming fair Scheduler:

- If the Lock implementation is Starvation
free

Every thread will eventually get the lock and
eventually the call to the function will return.

* So our implementation of Insert, Remove and
Contains is Starvation-free



1.Course Grained

5. Advantages / Disadvantages:

Advantages:

- Simple.

- Obviously correct.
Disadvantages:

- High Contention.

- Bottleneck!



1.Course Grained

6. Running times:

The tests were run on Aries - Supports 32
running threads. UltraSPARC T1 - Sun
Fire T2000.

Total of 200000 operations.

10% adds, 2% removes, 88% contains - normal
work load percentages on a set.

Each time the list was initialized with 100
elements.

One run with a max of 20000 items in the list.
Another with only 2000.



1.Course Grained

6. Running times:

Seconds

30
25
20
15
10

Speed up

—— 2000 max
items in list

20000 max
items in list

4 8 12 16 20 24 28 32
No. Threads




2.Fine Grained

1. Describing the algorithm:

+ Split object into pieces
- Each piece has own lock.

- Methods that work on disjoint pieces
need not exclude each other.



2.Fine Grained

1. Describing the algorithm:

+ Add(x) / Remove(x) / Contains(x):

- Go throw the list, lock each node and release

only after the lock of the next element has
been acquired.

- Once you have reached the right point of the
list perform the Add / Remove / Contains
operation.



2.Fine Grained

1. Describing the algorithm: illustrated Remove.

HE g O g O g O gCIN

OOOQ



2.Fine Grained

1. Describing the algorithm: illustrated Remove.

6




2.Fine Grained

1. Describing the algorithm: illustrated Remove.

6 6
B (OO g OE g Cll

Oy,




2.Fine Grained

1. Describing the algor'uThm illustrated Remove.

T ;@.@B_.@




2.Fine Grained

1. Describing the algorithm: illustrated Remove.

6 O
sexanil

Oy,




2.Fine Grained

1. Describing the algorithm: illustrated Remove.

SEagth (e[ =]
LS



2.Fine Grained

2. Explaining why every step is needed.

Why do we need
to always hold 2
locks?



2.Fine Grained

2. Explaining why every step is needed.

HE g O g O g O gCIN

O o,
Concurrent removes Q



2.Fine Grained

2. Explaining why every step is needed.

BB OB g OE g OE gCIl

Concurrent removes @ @



2.Fine Grained

2. Explaining why every step is needed.

BEn{OE 5o OE g OE gt

Concurrent removes @ @



2.Fine Grained

2. Explaining why every step is needed.

HE g OIE o (OF ;o dOE g€

O o,
Concurrent removes Q



2.Fine Grained

2. Explaining why every step is needed.

0

O o,
Concurrent removes Q



2.Fine Grained

2. Explaining why every step is needed.

6

O o,
Concurrent removes Q




Concurrent Removes

2. Explaining why every step is needed.

6




Concurrent Removes

2. Explaining why every step is needed.

6




2.Fine Grained

2. Explaining why every step is needed.

O o,
Concurrent removes Q @



2.Fine Grained

2. Explaining why every step is needed.

(13—(Iy [ -

Bad news, C
not removed
O o,
Concurrent removes Q

an




2.Fine Grained

2. Explaining why every step is needed.

HE g O g O g O gCIN

remove(b)
Concurrent removes Q @

Now with 2 locks.



2.Fine Grained

2. Explaining why every step is needed.

BB dOE g OE g OE gCIl

remove(b)
Concurrent removes Q @

Now with 2 locks.



2.Fine Grained

2. Explaining why every step is needed.

([Tl ElF>(c[5—E]]

Concurrent removes @ @

Now with 2 locks.



2.Fine Grained

2. Explaining why every step is needed.

BB {OE 5 OE g OE gt

remove(b)
Concurrent removes Q @

Now with 2 locks.



2.Fine Grained

2. Explaining why every step is needed.

Concurrent removes
Now with 2 locks.



2.Fine Grained

2. Explaining why every step is needed.

Concurrent removes
Now with 2 locks.



2.Fine Grained

2. Explaining why every step is needed.

Concurrent removes
Now with 2 locks.



2.Fine Grained

2. Explaining why every step is needed.

6 6
BB (55 (O dOE 2gClB

remove(b)
Concurrent removes Q @

Now with 2 locks.




2.Fine Grained

2. Explaining why every step is needed.

6 6

acquire
Lock of b
ént r'emov95o

Now with 2 locks.



2.Fine Grained

2. Explaining why every step is needed.

6 6

Cannot
acquire

lock of b
O O
Concurrent removes®

Now with 2 locks.



2.Fine Grained

2. Explaining why every step is needed.

6 6

([Fr(el= %@D
Concurrent removes Q @

Now with 2 locks.




2.Fine Grained

2. Explaining why every step is needed.

6 6

Proceed
to
remove(b)

Concurrent removes
Now with 2 locks.



2.Fine Grained

2. Explaining why every step is needed.

6 6

O o,
Concurrent removes Q
Now with 2 locks.




2.Fine Grained

2. Explaining why every step is needed.

6 6

O

Concurrent removes
Now with 2 locks.



2.Fine Grained

2. Explaining why every step is needed.

([5—~

OO

Concurrent removes
Now with 2 locks.




2.Fine Grained

2. Explaining why every step is needed.

- Conclusion:

Now that we hold 2 locks for Remove / Add /
Contains. If a node is locked :

- It can't be removed and so does the next node in the
list.

- No new node can be added before it and after it.



Remove method

public boolean remove(ltem 1tem) {
int key = 1tem.hashCode();
Node pred, curr;

try {

} Tinally {
curr.unlock();
pred.unlock();

h3s
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Remove method

int key = i1tem.hashCode();

Key used to order node
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Remove method

Node pred, curr;

Predecessor and current nodes
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Remove method

try {

v 4

Make sure

L finally { locks released
curr.unlock();
kpred.unlock();

Art of Multiprocessor Programming 109




Remove method

—

Everything else

Art of Multiprocessor Programming 110




Remove method

try {
pred = this.head;

pred. lock();
curr = pred.next;
curr.lock();

1 finally { .. }

Art of Multiprocessor Programming 111




Remove method
lock pred == head

pred = this.head;
pred. lock();

E
¥
— B
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Remove method

Lock current

curr = pred.next;
curr.lock();

Art of Multiprocessor Programming 113




Remove method

Traversing list

Art of Multiprocessor Programming 114




Remove: searching

while (curr.key <= key) {

iIT (item == curr.item) {
pred.next = curr.next;
return true;

}

pred.unlock();

pred = curr;

Curr = curr.next;

curr.lock();

}

return false;

Art of Multiprocessor Programming 115




Remove: searching

while (curr.key <= key) {

Search key range
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Remove: searching

while (curr.key <= key)

At start of each loop:
curr and pred locked

Art of Multiprocessor Programming




Remove: searching

- - _

iIT (item == curr.item) { )
pred.next = curr.next;
return true; )

If item found, remove node

Art of Multiprocessor Programming 118




Remove: searching

/. - _ N
It (1tem == curr.item) {
pred.next = curr.next;
return true; )

If node found, remove it
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Remove: searching

Unlock predecessor

pred.unlock();
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Remove: searching

Only one node locked!

pred.unlock();

Art of Multiprocessor Programming 121




Remove: searching

demote current

[pred = curr,;
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Remove: searching

Find and !ock new current

curr = curr.next;
curr.lock();
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Remove: searching

Lock invariant restored

r = - .
curr.lock();
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Remove: searching

Otherwise, not present

return false;
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2.Fine Grained

3. Code review:
Add:

Continued:
public boolean add(T item) { if (curr.key == key) {
int key = item.hashCode(); return false;
head.lock(); }
Node pred = head,; Node newNode = new Node(item);
try { newNode.next = curr;
Node curr = pred.next; pred.next = newNode;
curr.lock(); Finding the place to return true;
try { add the item: }finally {
while (curr.key < key) { curr.unlock();
pred.unlock(); }
pred = curr; Hinally { Adding the item:
curr = curr.next; pred.unlock();
curr.lock(); }

h ]

j }



2.Fine Grained

3. Code review:

Contains: ,
Continued:
public boolean contains(T item) { return (curr.kev == key);
Node pred = null, curr = null; } finally {
int key = item.hashCode(); curr.unlock();
head.lock(); } g
e N Return true iff found
pred = head; pred.unlock();
curr = pred.next; Finding the place to }
CUFEJOCKO: add the item: }
try

while (curr.key < key) {
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}



2.Fine Grained

Proving correctness for Remove(x) function:

*  So how do we prove correctness of a method in
a concurrent environment?

1. Decide on a Rep-Invariant. Donel
2. Decide on an Abstraction map. Donel

3. Defining the operations:

Remove(x): If x in the set => x won't be in the set and return
true.

If x isn't in the set => don't change the set and return false.
Donel



2.Fine Grained

Proving correctness for Remove(x) function:

4. Proving that each function keeps the Rep-
Invariant:

1. Tail reachable from head.
2. Sorted.
3. No duplicates.

1. The newly created empty list obviously keeps
the Rep-invariant.

2. Easy to see from the code that for each
function if the Rep-invariant was kept before
the call it will still hold after it.

Donel



2.Fine Grained

Proving correctness for Remove(x) function:

5. Split the function to all possible run time
outcomes.

In our case:
1. Successful remove. (x was in the list)
2. Failed remove. (x wasn't in the
list)

Donel
6. Proving for each possibility.

We will start with a successful remove. (failed
remove is not much different)



2.Fine Grained

Proving correctness for Remove(x) function:

successful remove.
6. Deciding on a linearization point for a successful
remove.

Reminder: Linearization point - a point in time that we
can say the function has happened in a running
execution.

We will set the Linearization point to after the
second lock was acquired. Donel



Why remove() is linearizable

iIT (1tem == curr.item) {

pred reachable from head
scurr is pred.next
*SO curr.item is in the set
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Why remove() Is linearizable

pred.next = curr.next;

Linearization point if
item Iis present
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Why remove() Is linearizable

(if (item == curr.item) { 0
pred.next = curr.next;
_ return true;

Node locked, so no other
thread can remove it ....
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Why remove() is linearizable

Item not present

return false;
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Why remove() is linearizable

pred reachable from head
ecurr is pred.next

spred.key < key
Ueturn falsﬁ *key < curr.key

“ Art of Multiprocessor Programming 131
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Why remove() Is linearizable

Linearization point

curr = curr.next,
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2.Fine Grained

Proving correctness for Remove(x) function:

successful remove.
7. Now that the linearization point is set we need
to prove that:

7.1. Before the linearization point the set
contained x.

7.2. After it the set won't contain x.



2.Fine Grained

Proving correctness for Remove(x) function:
successful remove.

7.1. Before the linearization point the set contained
X.

1. Since we proved the Rep-Invariant holds
then pred=z is accessible from the head.

2. Since z,x are locked. No other concurrent
call can remove them.

3. Since curr=x is pom‘red to by pred then x is

BERTERIAEAE, ST
TSt




2.Fine Grained

Proving correctness for Remove(x) function:

successful remove.
7.1. Before the linearization point the set contained
X. Now by the Abstraction map definition:

- S(Ly»al3>bls>[] )={ab}

since x is reachable from the head => x is in
the seft! Donel

([ 3= 3=l 3] )
T



2.Fine Grained

Proving correctness for Remove(x) function:
successful remove.

7.1. After it the set won't contain x.

1. after the linearization point: pred.next =
curr.next;

Curr=x won't be pointed to by pred=z and so won't be
accessible from head.

([l x[ 5




2.Fine Grained

Proving correctness for Remove(x) function:

successful remove.

7.1. After it the set won't contain x.
2. Now by the Abstraction map definition:

since X is hot reachable from the head => x is
not in the set! Donel

([0 <[~
L



2.Fine Grained

Proving correctness for Remove(x) function:

In conclusion:

- For every possible run time execution for Remove(x) we
found a linearization point that holds the remove
function specification in the set using the Abstraction
map while holding the Rep-Invariant.

Donel



2.Fine Grained

4. Methods properties:

Assuming fair scheduler. If the Lock
implementation is Starvation free:

Every thread will eventually get the lock and
since all methods move in the same direction in
the list there won't be deadlock and eventually
the call to the function will return.

So our implementation of Insert, Remove and
Contains is Starvation-free.



2.Fine Grained

5. Advantages / Disadvantages:

Advantages:
- Better than coarse-grained lock
Threads can traverse in parallel.
Disadvantages:
- Long chain of acquire/release.
- Inefficient.



2.Fine Grained

6. Running times:

Seconds

50
40
30
20
10

Speed up

—— 2000 max
items in list

20000 max
items in list

o o V'
\Q\A * * V'S <> &>

v

4 8 12 16 20 24 28 32
No. Threads




2.Fine Grained

6. Running times:

Seconds

ol
ONDAOOWON

Speed up
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2.Fine Grained

6. Running times:

Seconds
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30
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Speed up
max of 20000 items
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3. Optimistic
1. Describing the algorithm:

Add(x) / Remove (x) / Contains(x):
1. Find nodes without locking

2. Lock nodes

3. Check that everything is OK = Validation.

3.1 Check that pred is still reachable from head.
3.2 Check that pred still points to curr.

4. If validation passed => do the operation.



3. Optimistic

1. Describing the algorithm:

Finding without
+ Example of add(c): locking




3. Optimistic
1. Describing the algorithm:

» Example of add(c):

(T3> (aT-




3. Optimistic

1. Describing the algorithm:
Validation 1

+ Example of add(c):




3. Optimistic

1. Describing the algorithm:
Validation 1

+ Example of add(c):




3. Optimistic

1. Describing the algorithm:

Validation 2
» Example of add(c):

(T3> (aT-

Yes. b is still

reachable from
head.



3. Optimistic

1. Describing the algorithm:

Validation 2
» Example of add(c):

(T3> (aT-

Yes. b still points to d.



3. Optimistic
1. Describing the algorithm:

» Example of add(c):

(T3> (al-




3. Optimistic

2. Explaining why every step is needed.

Why do we need
to Validate?



3. Optimistic
2. Explaining why every step is needed.

* First: Why do we need to validate that pred is
accessible from head?

+ Thread A Adds(c).

- After thread A found b, before A locks. Another
thread removes b.

(13— e[ +—ET3F—d[3— )



3. Optimistic
2. Explaining why every step is needed.

- Adds(c).
Finding without locking

—> @[3 —ED




3. Optimistic
2. Explaining why every step is needed.
- Adds(c).

Another thread removed




3. Optimistic
2. Explaining why every step is needed.
- Adds(c).

Now A locks band d




3. Optimistic
2. Explaining why every step is needed.
- Adds(c).

And adds ¢




3. Optimistic
2. Explaining why every step is needed.
-+ Adds(c).

Now frees the locks.

But c isn't added!



3. Optimistic
2. Explaining why every step is needed.

+ Second: Why do we need to validate that pred
Still points to curr?

+ Thread A removes(d).

- then thread A found b, before A locks. Another
thread adds(c).

(13— e[ +—ET3F—d[3— )



3. Optimistic
2. Explaining why every step is needed.

- Removes(d)
Finding without locking

—> @[3 —ED




3. Optimistic

2. Explaining why every step is needed.

- Removes(d)

Another thread Adds(c)




3. Optimistic
2. Explaining why every step is needed.

- Removes(d)

Now A locks.




3. Optimistic
2. Explaining why every step is needed.

- Removes(d)

pred.next = curr.next;




3. Optimistic
2. Explaining why every step is needed.

+ Removes(d)
Now frees the locks.

(d[3=—>(e])

Instead ¢ and d were
deleted!



What Else Could Go Wrong?

F—ED)

Art of Multiprocessor Programming 149




What Else Coould Go Wrong?

& &
(13— LB+ 30
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What Else Coould Go Wrong?
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What Else Could Go Wrong?
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What Else Could Go Wrong?

CE
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3. Optimistic
Important comment.

Do notice that threads might traverse deleted
nodes. May cause problems to our Rep-Invariant.

* Careful not to recycle to the lists nodes that
were deleted while threads are in a middle of an
operation.

» With a garbage collection language like java - ok.
For C - you need to solve this manually.



Correctness

o |f
— Nodes b and ¢ both locked
— Node b still accessible
— Node c still successorto b

e Then
— Neither will be deleted
— OK to delete and return true
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Unsuccessful Remove

([ I!II: ul: an
N




Validate (1)

6 o6
b[F>(a[F—>(e] ]

Yes, b still
reachable
from head
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Validate (2)

Yes, b still
pomts tod

Arto fMItp or Programming




OK Computer




Correctness

o |f
— Nodes b and d both locked
— Node b still accessible
— Node d still successorto b

e Then
— Neither will be deleted
— No thread can add c after b
— OK to return false
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Validation

private boolean
validate(Node pred,
Node curry) {
Node node = head;
while (nhode.key <= pred.key) {
IT (hode == pred)
return pred.next == curr;
node = node.next;

}

return false;

E Art of Multiprocessor Programming 164
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Validation

Node pred,
Node curr

Predecessor &
current nodes

Art of Multiprocessor Programming 165




Validation

Node node = head;

Begin at the
beginning

Art of Multiprocessor Programming 166




Validation

:j"‘“ﬂ!lli_l_l;,.,

while (node.key <= pred.key) {

Search range of keys
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Validation

2
\I.lﬂ ﬂ;_"

IT (hode == pred)

R

Predecessor reachable
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Validation

return pred.next == curr;

~X

Is current node next?
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Validation

Otherwise move on

node = node.next;
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Validation

Predecessor not reachable

return false;
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Remove: searching

public boolean remove(ltem 1tem) {
int key = 1tem.hashCode();
retry: while (true) {
Node pred = this.head,;
Node curr = pred.next;
while (curr.key <= key) {
1T (1tem == curr.item)
break;
pred = curr;
Curr = curr.next;

1
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Remove: searching

Iint key = 1tem.hashCode();

:
;
¥
=

Search key
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Remove: searching

retry: while (true) {

:
;
¥
=

Retry on synchronization conflict
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Remove: searching

this.head;
pred.next;

Node pred
Node curr

Examine predecessor and current nodes
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Remove: searching

whille (curr.key <= key) {

Search by key
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Remove: searching

1T (1tem == curr.item)
break;

Stop if we find item
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Remove: searching

Move along

curr; J

curr curr._.next;
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Remove Method

try {
pred.lock(); curr.lock(Q);

It (validate(pred,curr) {
IT (curr.item == 1tem) {
pred.next = curr.next;

return true;

} else {

return false;

3} finally {
pred.unlock();

curr.unlock();

i34,
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Remove Method

try {

Always unlock

A1Y Finally {
pred.unlock();

curr.unlock();

333
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Remove Method

try {
pred.lock(); curr.lock(Q);

Lock both nodes
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Remove Method

1T (validate(pred,curr) {

Check for synchronization
conflicts
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Remove Method

(T (curr.item

\.

pred.next =
return true;

== item) { |

curr.next;

target found,
remove node

Art of Multiprocessor Programming
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Remove Method

/ target not found

return false;
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3. Optimistic

3. Code review:
Add:

public boolean add(T item) {
int key = item.hashCode();
while (true) { Search the list from
ENTry prea =tnis.nead; the beginning each

Entry curr =pred.next; yime yntil validation
while (curr.key <= key) { d
pred = curr; curr = curr.next; e

}
pred.lock(); curr.lock();

Continued:

try {

if (validate(pred, curr)) {
It (curr.key == key){
return false;
} else {
Entry entry = new Entry(iteni:
entry.next = curr;
pred.next = entry;

return true; If validation succeeds

N Attempt Add

} finally {
pred.unlock(); curr.unlock();

}



3. Optimistic

3. Code review:
Contains:

public boolean contains(T item) {

int key = item.hashCode();

while (true) { Search the list from
ENTry prea =tnis.nead; the beginning each
Entry curr =pred.next; time yntil validation
while (curr.key < key) {

pred = curr; curr = curr.next; succeeds

}

try {
pred.lock(); curr.lock();

if (validate(pred, curr)) {

return (curr.key ==key), ) .
) ( YY1 validation succeeds

} finally { Return the result
pred.unlock(); curr.unlock();
}
}
}



3. Optimistic
4. Methods properties:

+ Assuming fair scheduler. Even if all the lock
implementations are Starvation free. We will
show a scenario in which the methods Remove /
Add / Contains do not return.

* And so our implementation won't be starvation
free.



3. Optimistic
4. Methods properties:

* Assuming Thread A operation is Remove(d) /
Add(c) / Contains(c).

+ If the following sequence of operations will
happen:




3. Optimistic
4. Methods properties:

The sequence:
+ 1. Thread A will findb. ~ * 4. Thread C will add b.

+ 2. Thread B will remove b. how go to 1.
- 3. The validation of thread A will fail.

The thread call to the
function won't return!



3.0ptimistic
5. Advantages / Disadvantages:

Advantages:
- Limited hot-spots
* Targets of add(), remove(), contains().
* No contention on traversals.
- Much less lock acquisition/releases.
- Better concurrency.
Disadvantages:
- Need to traverse list twicel
- Contains() method acquires locks.



3.0ptimistic
5. Advantages / Disadvantages:

- Optimistic is effective if:
- The cost of scanning twice without locks is less
than the cost of scanning once with locks

- Drawback:

- Contains() acquires locks. Normally, about 90%
of the calls are contains.



3. Optimistic

6. Running times:

Seconds

30
25
20
15
10

Speed up

—— 2000 max
items in list

20000 max
items in list
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No. Threads
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3. Optimistic

6. Running times:

Seconds

50
40
30
20
10

Speed up
max of 20000 items

4 8 12 16 20 24 28 32
No. Threads

—— Fine List

Coarse
Grained

Optimistic




4. Lazy

1. Describing the algorithm:

Validate:
- Pred is not marked as deleted.
- Curr is not marked as deleted.
- Pred points to curr.



4. Lazy

1. Describing the algorithm:

Remove(x):
 Find the node to remove.
* Lock pred and curr.
- Validate. (New validation!)
* Logical delete
- Marks current node as removed (nhewl!).
* Physical delete
- Redirects predecessor’s next.



4. Lazy

1. Describing the algorithm:

Add(x):
 Find the node to remove.
* Lock pred and curr.
- Validate. (New validation!)
* Physical add
- The same as Optimistic.



4. Lazy

1. Describing the algorithm:

Contains(x):
- Find the node to remove without locking!

- Return true if found the node and it isn't marked
as deleted.

- No locks!



4. Lazy

1. Describing the algorithm:
- Remove(c):

(I 3> 3> 3> [T3>d[13>




4. Lazy

1. Describing the algorithm:
- Remove(c):

(L [ 3T 30T

1. Find the node
Present in list



4. Lazy

1. Describing the algorithm:
- Remove(c):

Present in list



4. Lazy

1. Describing the algorithm:
- Remove(c):

3. Validate

Present in list



4. Lazy

1. Describing the algorithm:
- Remove(c):

4. Logically delete

Set as marked



4. Lazy

1. Describing the algorithm:
- Remove(c):

5. Physically delete

Pred.next = curr.next



4. Lazy

1. Describing the algorithm:
- Remove(c):

(L [ 3=« 3—~{0,

5. Physically delete
Cleaned



4. Lazy

1. Describing the algorithm:

Given the Lazy Synchronization algorithm.

What else should we change?



4. Lazy

1. Describing the algorithm:

+ New Abstraction map!

+ S(head) =
- { x | there exists node a such that
* a reachable from head and
- a.ifem = x and
* a is unmarked

-}



4. Lazy

2. Explaining why every step is needed.

Why do we need
to Validate?



4. Lazy

2. Explaining why every step is needed.

* First: Why do we need to validate that pred Still
points to curr?

* The same as in Optimistic:
+ Thread A removes(d).

- Then thread A found b, before A locks. Another
thread adds(c).

- ¢ and d will be removed instead of just d.

([ e[ +—ETF—d[3— D)



4. Lazy

2. Explaining why every step is needed.

Second: Why do we need to validate that pred
and curr aren't marked logically removed?

To make sure a thread hasn't removed them
between our find and our lock.

The same scenario we showed for validating that
pred is still accessible from head holds here:

- After thread A found b, before A locks. Another
thread removes b. (our operation won't take place).

([ e[ +—ETF—d[3— D)



4. Lazy

3. Code review:
Add:

Continued:
public boolean add(T item) { trv {
int key = item.hashCode(); if (validate(pred, curr)) {
while (true) { Search the list from If (curr.key == key}{
Noae preda =tnis.nead; the beginning each return false;
Node curr = head.next; 4: . . . } else {
while (curr.key < key) { time, until v‘:jhdahon Node Node = new Node(item);
pred = curr; curr = curr.next; e Node.next = curr;
} pred.next = Node;
pred.lock(); return true; If validation succeeds
try { }
curr.lock(); } Aﬂ'emp‘r Add
} finally {
curr.unlock();
}
} finally {
pred.unlock();
}
}



4. Lazy

3. Code review:

Remove: |
Continued:
public boolean remove(T item) { trv{
int key = item.hashCode(); if (validate(pred, curr)) {
while (true) { Search the list from if (curr.key !=key) {
Noae preda =tnis.nead; the beginning each return false;
Node curr = head.next; time  until validation }else{
while (curr.key < key) { ! curr.marked = true;
pred = curr; curr = curr.next; succeeds pred.next = curr.next;
} return true,
pred.lock(); }
try { }
curr.lock(); } finally {
try { curr.unlock();
}
} finally {
pred.unlock();
}

Validation

Logically remove

Physically remove



4. Lazy

3. Code review:
Contains:

public boolean contains(T item) {
int key = item.hashCode();
Node curr = this.head:; No Lock!
while (curr.key < key)
curr = curr.next:
returnicurr.key == key && !curr.marked;

}

Check if its there
and not marked



4. Lazy

4. Methods properties:

Remove and Add:

» Assuming fair scheduler. Even if all the lock
implementations are Starvation free. The same
scenario we showed for optimistic holds here.

* (only here the validation will fail because the
node will be marked and not because it can't be
reached from head)

* And so our implementation won't be starvation
free.



4. Lazy

4. Methods properties:

But... Contains:
- Contains does not lock!

* In fact it isn't dependent on other threads to
work.

And so... Contains is Wait-free.

Do notice that other threads can't increase the
list forever while the thread is in contains
because we have a maximum size to the list
(<tail).



4. Lazy

5. Advantages / Disadvantages:

» Advantages:
- Contains is Wait-free. Usually 90% of the calls!
- Validation doesn't rescan the list.

- Drawbacks:
- Failure to validate restarts the function call.
- Add and Remove use locks.



4. Lazy

6. Running times:
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4. Lazy

6. Running times:
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Optimistic lock-free
Concurrency

CAS(&x,a,b) = if *x = a then *x = b return true else return false

lock Xx; int t;
X++; do {
unlock Xx; t=x;

} while (ICAS(&x, t, t+1))



Reminder: Lock-Free Data

®

Structures

e No matter what ...

— Guarantees minimal progress in any
execution

—I.e. Some thread will always complete a
method call

— Even if others halt at malicious times
— Implies that implementation can’t use locks
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Lock-free Lists

* Next logical step
— Walit-free contains|()
— lock-free add() and remove()

e Use only compareAndSet()
— What could go wrong?
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Lock-free Lists

Logical Removal

Use CAS to verify pointer Physical Removal
IS correct

Not enough!
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Problem...

Logical Removal

Node added
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The Solution: Combine Bit and
Pointer

Logical Removal =
Set Mark Bit

Physical
Mark-Bit and Pointer ~ Removal Fail CAS: Node not

are CASed together CAS added after logical
(AtomicMarkableReference)

Removal
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Solution

e Use AtomicMarkableReference

o Atomically
— Swing reference and
— Update flag

 Remove In two steps
— Set mark bit in next field
— Redirect predecessor’s pointer
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Marking a Node

« AtomicMarkableReference class
— Java.util.concurrent.atomic package

(

Reference ——

{address ] =

U

mark bit
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Extracting Reference & Mark

Public Object get(boolean|[] marked);
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Extracting Reference & Mark

Object oolean|]
Jee

Returns mark at

Ret
eturns array index 0!

reference
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Extracting Mark Only

boolean]

Value of
mark
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Changing State

Public boolean compareAndSet(
Object expectedRef,
Object updateRefT,
boolean expectedMark,
boolean updateMark) ;
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Changing State

If this is the current
reference ...

[Object expec@lﬂf

[boolean expectedMark,

And this is the
current mark ...
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Changing State

...then change to this

/ new reference ...

bject u dateRE ]
(Obj p Sl

| boolean updateMark);

W and this new

mark
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Changing State

public boolean attemptMark(
Object expectedRef,
boolean updateMark) ;
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Changing State

Object expectedRef,]

If this is the current
reference ...

Art of Multiprocessor Programming 241




Changing State

boolean updateMark)f;

.. then change to
this new mark.
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Removing a Node

C}E}%@i—;@
7@




Removing a Node

failed




Removing a Node

(3Gl ClB—l3—~6l]

remove
b Oo o
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Removing a Node

([~

remove
b Oo o
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Traversing the List

 Q: what do you do when you find a
“logically” deleted node In your path?

* A: finish the job.
— CAS the predecessor’s next field
— Proceed (repeat as needed)
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Lock-Free Traversal
(only Add and Remove)

pred

L
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The Window Class

class Window {
public Node pred;
public Node curr;
Window(Node pred, Node curr) {
this.pred = pred; this.curr = curr;

}
}
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The Window Class

public Node pred;
public Node curr;

A container for pred
and current values
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Using the Find Method

Window window = find(head, key);
Node pred = window.pred;
curr = window.curr;,
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Using the Find Method

Window window = find(head, key);

Find returns window
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Using the Find Method

Node pred = window.pred;
curr = window.curr;

Extract pred and curr
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The Find Method

Window window

At some instant,
(35—

pred curr succ

or ...
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The Find Method

Window window

not in list

At some instant,

{3
curr= null
pred succ
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Remove

public boolean remove(T 1tem) {
Boolean snip;
while (true) {
Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
iIT (curr_.key = key) {
return false;
} else {
Node succ = curr.next.getReference();
snip = curr.next.compareAndSet(succ, succ, fTalse
true);
iIT (!snip) continue;
pred.next.compareAndSet(curr, succ, Talse, false);
return true;
i3 3



Remove

public boolean remove(T 1tem) {

Boolean snip;

while (true) {
- ind

= find(head, key);

Node pre Qnhdow.pred, curr = window.curr;
iIT (curr.k
return falsge,;
} else {
Node succ .getReference();
snip = curr.next.co eAndSet (succ, succ, false,
true);

iIT (!snip) continue;
pred.next.compareAndSet(c
return true;

r, succ, false, false);

113 Keep trying
e



Remove

Window window = find(head, key);
Node pred = window.pred, curr = window.curr;

Find neighbors



Remove

(if (curr_key 1= key) {)
return false;
\} else {

She’s not there ...



Remove

Try to mark node as deleted

Node succ = curr.next.getReference();
snip = curr.next.compareAndSet(succ, succ, fTalse,

true),;




Remove

If it doesn’t work,
just retry, if it [-m]
does, job
essentially done

iIT (!snip) continue;




Remove

Try to advance reference

(if we don’t succeed, someone else did or will).

N

pred.next.compareAndSet(curr, succ, false, false);
return true;

£7. e



Add

public boolean add(T 1tem) {
boolean splice;
while (true) {
Window window = find(head, key);
Node pred = window.pred, curr = window.curr;
IT (curr_key == key) {
return false;
} else {
Node node = new Node(item);
node.next = new AtomicMarkableRef(curr, false);
iIT (pred.next.compareAndSet(curr, node, false,
false)) {return true;}

H3d,
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Add

iIT (curr.key == key) {
return false;

Iltem already there.
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Add

[\ el 1
Node node = new Node(item);
node.next = new AtomicMarkableRef(curr, false);

cwe)

create new node

Art of Multiprocessor Programming 265




Add

Install new node,
else retry loop

s

iIT (pred.next.compareAndSet(curr, node, false,
false)) {return true;}
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Walit-free Contains

public boolean contains(T 1tem) {
boolean marked;
int key = 1tem.hashCode();
Node curr = this.head;
while (curr.key < key)
curr = curr.next;
Node succ = curr.next.get(marked);
return (curr.key == key && 'marked[O0])
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Walit-free Contains

Only diff is that we
get and check
marked

N

Node succ = curr.next.get(marked);
return (curr.key == key && !'marked[O0])
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Lock-free Find

public Window find(Node head, int key) {
Node pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
retry: while (true) {
pred = head;
curr pred.next.getReference();
while (true) {
succ = curr.next.get(marked);
while (marked[O0]) {

}
IT (curr._.key >= key)
return new Window(pred, curr);
pred = curr;
CUrr = succ;
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Lock-free Find

retry: while (true) {

\ If list changes

while traversed,
start over
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Lock-free Find

Start looking from head

head;
pred.next.getReference();

pred
curr
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Lock-free Find

Move down the list

while (true) {
succ = curr.next.get(marked);
while (marked[O]) {

ks
IT (curr._.key >= key)
return new Window(pred, curr);
pred curr;

curr SucCc, /
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Lock-free Find

succ = curr.next.get(marked);

Get ref to successor and
current deleted bit

AIT OT Multiprocessor rrogramming 213




Lock-free Find

[ while (marked[0]) { ]

} I/

Try to remove deleted nodes in
path...code details soon
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Lock-free Find

If curr key that is greater or
equal, return pred and curr

iIT (curr.key >= key)
return new Window(pred, curr);
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Lock-free Find

Otherwise advance window and
loop again
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Lock-free Find

retry: while (true) {

while (marked[O0]) {
snip = pred.next.compareAndSet(curr,
succ, false, false);
IT (Isnip) continue retry;
Curr = succ;
succ curr._next.get(marked);

}
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Lock-free Find

Try to snip out node

snip = pred.next.compareAndSet(curr,
succ, false, false);
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Lock-free Find

if predecessor’s next field changed,
retry whole traversal

il

IT (Isnip) continue retry;
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Lock-free Find

Otherwise move on to check
if next node deleted

succ;
curr._next.get(marked);
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Performance

e Different list-based set implementaions

e 16-node machine
e Vary percentage of contains() calls
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Low Contains Ratio

Ops/sec (50% reads/0 load)
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As Contains Ratio Increases
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Summary

e Coarse-grained locking

* Fine-grained locking

o Optimistic synchronization
e Lazy synchronization

e Lock-free synchronization
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“To Lock or Not to Lock”

e Locking vs. Non-blocking:
— Extremist views on both sides

 The answer: nobler to compromise

— Example: Lazy list combines blocking add()
and remove()and a wait-free contains()

— Remember: Blocking/non-blocking is a property
of a method
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An Optimistic Lock-free Stack

Top
‘ n Nex n Next
pop( { push(x)}{
1 local done, next, t; 10 local done, t;
2 done =false;
3  while (Idone) { 11 done = false;
4 t=Top; 12 while(!done) {
5 if (t==null) return null; 13 t=Top;
6 next = t.Next; . 14 X.Next = t;
7 done = CAS(& Lnext) 15 done = CAS(&Top, t, x);
8 [ : \
: rﬁw%ugﬁ? ABA pristithifeladerriiearrupted |




ABA Problem

Threads T1 and T2 are interleaved as follows:

T1:

pop()

{
t=Top
next = t.Next
interrupted

resumes
CAS(&Top,t,next)
succeeds

stack corrupted

T2:

a = pop();
c = pop();

push(a);

Timeline

Top Top
T}
next—: C
B B
(r'gr%:r/z g

Top¥

Tt —

nhext—s ¢
(removed)




Summary

Our winner:  Optimistic Lock-free.
Second best: Lazy.

Third: Optimistic.
Fourth: Fine-Grained.
Last: Coarse-Grained.

?



Summary

Answer: No.

Choose your implementation carefully
based on your requirements.



Summary

» Concurrent programming is hard.
- Concurrency is error-prone.

* Formal method is necessary.





