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1 Introduction
This paper is mainly based on Czarnecki’s book on generative programming [2].

There is an increasing demand for systems that can be easily configured for a spe-
cific deployment environment. In addition to configuration, the produced systems may
need to be able to adjust themselves (e.g. modifying their caching policies depending
on the current workload) at runtime. Such systems are called adaptive1. Adaptivity
is not limited to runtime. We can also have libraries that automatically adapt (e.g. by
selecting algorithms) the code they contribute to a system being compiled.

1.1 Terminology
• Metaprogramming is writing programs that represent and manipulate other pro-

grams (e.g. compilers, program generators, interpreters) or themselves (reflec-
tion).

• Metaprograms represent and manipulate other programs or themselves.

• Reflection is the ability of a program to manipulate as data something represent-
ing the state of the program during its own execution. There are two aspects of
such manipulation: introspection and intercession. Both aspects require a mech-
anism for encoding execution state as data; providing such an encoding is called
reification.

• Introspection is the ability of a program to observe and therefore reason about its
own state.

• Intercession is the ability of a program to modify its own execution state or alter
its own interpretation or meaning.

• Metaobjects represent methods, execution stacks, the processor, and nearly all
elements of the language and its execution environment.

• Metalevel architecture is an architecture where a metalevel provides information
about selected system properties and makes the software self-aware while a base
level includes the application logic.

• Partial evaluation is a technique to optimize the system when running some code
multiple times on sets of input data in which one part is varying and another part
is constant. In that case, it is useful to pre-evaluate the code with respect to the
constant part of the data.

1Adaptable systems can be adapted to a praticular deployment environment, whereas adaptive systems
adapt themselves to a deployment environment.
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2 Metaprogramming in C++
The need for representing metainformation at compile time became apparent during
the development of the C++ Standard library. The problems were solved by the traits
template idiom (see 3.2). The first article on template metaprogramming [7] was pub-
lished in 1995. The IF<> template was the first control structure in a generic form [3]
and the remaining control structures were published in [4].

2.1 Support for metaprogramming
The metaprogramming support in C++ is not a designed feature but more or less abuse
of C++ compiler. The code of metaprograms is quite peculiar and obscure. There are
also limitations for complexity of the metaprograms set by the compilers (see section
5).

2.1.1 Reflection

Different languages provide different levels of reflection. While Smalltalk allows you
to directly modify classes or methods by modifying their metaobjects at runtime, Java
provides a much lower lever of reflection, mainly suitable for JavaBeans component
model and the Remote Method Invocation mechanism. C++ provides even less support
for reflection than Java, the most important feature being runtime type-identification
(RTTI). There are also reflective extensions available to C++ (e.g. IBM System Object
Model) [5].

2.1.2 Two-Level Languages

An important concept to static metaprogramming is a concept of two-level languages.
Two-level languages contain static code, which is evaluated at compile time, and dy-
namic code, which is compiled and later executed at runtime. ISO/ANSI C++ contains
a template mechanism for defining parameterized classes and functions. This includes
type and integral template parameters and partial ad full template specialization.

Templates together with other C++ features constitute a Turing-complete2, compile-
time sublanguage of C++ (and so C++ is a two-level language). Because the sublan-
guage is Turing complete, there are no theoretical limits to what you can implement
with it. In practice, there might be technical limitations, such as compiler limits.

The main compile-time conditional construct is template specialization: The com-
piler has to select a matching template out of several alternatives. The compile-time
looping construct is template recursion (e.g. a member of class templates used in its
own definition.). The compiler has to expand such patterns recursively.

2.2 Example 1, Factorial
One of the most common examples of using static code (i.e., code executed at compile
time) is computing the factorial

n! = 1 · 2 · 3 · · · · (n − 1) · n

of a natural number. A conventional C++ factorial function is shown in Figure 1.
2A Turing-complete language is a language with at least a conditional and a looping construct. All

Turing-complete languages are equally powerful, that is, they are equivalent to a Turing machine.
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int factorial(int n)
{
return (n==0)? 1: n*factorial(n-1);

}

Figure 1: Recursive factorial function

The corresponding static code for computing the factorial at compile time is given
in Figure 2. RET is used as an abbreviation for a return statement of a conventional
function. When the compiler tries to instantiate the structure template Factorial<7>
(where n=7). This involves initializing the enumerator RET with Factorial<6>::RET*7
and the compiler has to instantiate Factorial<6>::RET (and so on). The template spe-
cialization matches for n=0 (i.e. Factorial<0>).

template<int n>
struct Factorial
{ enum {RET=Factorial<n-1>::RET*n};
};

// Note: template specialization
template<>
struct Factorial<0>
{ enum{RET=1};
};

// Usage:
cout << "Factorial(7)= " << Factoral<7>::RET << endl;

Figure 2: Static code for computing factorial
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3 Template Metaprogramming
The ability to perform computations at compile time is not very exciting, but the pos-
sibility of using static code to manipulate dynamic code is more interesting. This is a
form of static metaprogramming, whish is referred to as template metaprogramming.

Template metaprogramming can be divided into several categories (see Figure 3):

• Writing metafunctions for computing types and numbers

• Representing metainformation using member traits, traits classes, traits tem-
plates, and nested templates

• Using static control structures (see section 4.1).

• Using metafunctions to generate code

• Developing embedded domain-specific languages using expression templates

Figure 3: Map of template metaprogramming
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3.1 Template Metafunctions
Template metafunctions are class templates (such as Factorial<> (section 2.2) or
IF<> (section 4.1)) that operate on elements of dynamic code (i.e. they are at the
metalevel of the dynamic code). The metafunctions can call other metafunctions (like
functions can call other functions).

Numeric metafunctions can operate directly (in C++) only on integral numbers
because floating-point numbers cannot be used as template parameters or compile-time
constant initializers. However, the floating-point arithmetic can be implemented on top
of integral arithmetic, if needed.

3.2 Metainformation and Traits
In template metaprograms, static code operates on dynamic code. In order to manipu-
late elements of the dynamic code, knowledge of some characteristics (e.g. value range
covered by a numeric type and its precision) of the elements is needed. The character-
istics are also referred to as traits. The traits can be encoded in static code as integral
constats or types.

There are three ways to associate traits with the type they describe:

• Member traits: Define each trait as a member type or constant of the type it
describes

• Traits classes: Encapsulate several traits in a seprate class

• Traits templates: Define a class template to hold the traits of a family types (e.g.
numeric_limits<> in ANSI C++)

3.3 Nested Templates
In addition to basic data structuring mechanism, more complex compile-time data
structures (such as lists or trees) are also needed. They can easily represented us-
ing nested templates. For example, the Lisp code (cons 1 (cons 2 (cons 3
(cons 9 nil)))) can be simulated at the compile-time level in C++ using nested
templates Cons<1, Cons<2, Cons<3, Cons<9,End> > > >.
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3.4 Code Generation
Template metaprograms can be used to compose code fragments, to compose tem-
plates, and to unroll loops at compile time. This is useful for generating highly opti-
mized and compact code for a given deployment context.

Template metaprogramming allows much more control in selecting code than pre-
processor directives (#ifdef ). The major difference is that static metaprogramming can
interpret static C++ data embedded in the controlled C++ program and compute new
static data, which can be used in the program.

For example, code fragments can be composed at compile time based on parameters
given:

IF<(MAX_NO<AlgorithmVariantA::MAX_ALLOWED),
AlgorithmVariantA,
AlgorithmVariantB>::RET::execute();

3.5 Composing Templates
The composing templates can be used to generate concrete types or class hierarchies
based on a number of abstract flags at compile time.

typedef IF<flag==listWithCounter,
ListWithLengthCounter<List<ElementType> >,
List<ElementType> >::RET ResultList;

3.6 Expression Templates
Expression templates [6] is a programming technique that allows one to generate cus-
tom code for C++ expressions involving function and operator calls. With expression
templates it is possible to implement

• Compile-time domain-specific checks on the structure of expressions, which the
C++ type system cannot express otherwise (e.g. “an expression cannot contain
more than five plus operators.”)

• Compile-time optimization transformations and custom code generation for ex-
pressions.

3.7 Recursive Code Expansion
Template programming can be used to expand code recursively (e.g. loop unrolling
or to generate test code). For example, code for raising m to the power of n can be
optimized, if n is known at compile time (see Figure 4). Even if C++ compilers will
perform loop unrolling, template metaprogramming gives you control over which loop
to unroll.

Normal static loops (see 4.2) also have code generation counterparts. These loops
(with prefix E) can be used to call static metafunctions with different parameters. For
example, calling PrintStat with parameters 1. . . 39 is done as follows:

EFOR<1,Less,40,+1,PrintStat>::exec();
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template<int n>
inline int power(const int& m)
{ return power<n-1>(m)*m;}

template<>
inline int power<1>(const int& m)
{ return m;}

template<>
inline int power<0>(const int& m)
{ return 1;}
//
cout << power<3>(m)<<endl;

Figure 4: Raising a number to the power of n, where n is known at compile time
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4 Control Structures
The control flow in template metaprograms is defined using recursion (recursive tem-
plates), selective matching (template specializations), and the conditional operator ?:.
The C++ selection statements (if and switch) can be simulated using metafunctions.

4.1 Conditions
Factorial<> in 2.2 can be regarded as a function, which is evaluated at compile time
and whose return value is in its RET member. Arguments and return values of such
functions can also be types instead of integer numbers. The metafunction IF<> in Fig-
ure 5 takes a Boolean and two types and returns a type. If condition is false, it
returns Then in RET, otherwise it returns Else in RET. Metafunction IF<> uses par-
tial template specialization (only condition for condition==false is specialized).
There is also version of IF<> with full template specialization for compilers that do
not support partial template specialization. The code for that is left out in order to save
space.

template<bool condition, class Then, class Else>
struct IF
{ typedef Then RET;
};
// NOTE: specialization
template<class Then, class Else>
struct IF<false,Then,Else>
{ typedef Else RET;
};

// Usage:
IF<(1+2>4), short, int>::RET i;
// the type of i is int

Figure 5: Implementation of IF<>

Moreover, a switch-statement (SWITCH<>) can be done using static part of C++. It
takes an integral expression and a list of case statements, where each case is a pair of an
integral tag an a type. The metafunction selects the first case matching the expression
value (i.e. the first case whose tag is equal to the expression value or to some designated
default tag), and returns the type contained in the case. The code is introduced in the
book[2] and the usage of SWITCH<> is shown in Figure 6.

4.2 Loops
The basic looping mechanism in template metaprogramming is template recursion.
However, there are cases in which a simple recursive definition of an algorithm is very
inefficient. An example of a problem with inefficient but simple recursive formulation
is computing Fibonacci numbers. Fibonacci numbers are defined as follows: fibn+1 =
fibn + fibn−1, where n > 0 and fib0 = 0 and fib1 = 1. The problem with a
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struct A {static void execute() {cout << "A" << endl;}};
struct B {static void execute() {cout << "B" << endl;}};
struct D {static void execute() {

cout << "Default" << endl;}};

// prints "Default"
SWITCH<(3+3),

CASE<1,A,
CASE<2,B,
CASE<DEFAULT,D> > >

>::RET::execute();

Figure 6: Example of using SWITCH<>

recursive implementation is multiple computation of the same values (for example,
fib3 = fib2 + fib1 ,where fib2 = fib1 + fib0). An iterative implementation has
linear time complexity.

template<int n>
struct Fib
{ enum { RET=Fib<n-1>::RET + Fib<n-2>::RET };
};
template <>
struct Fib<0>
{ enum { RET=0 };
};

template<>
struct Fib<1>
{ enum {RET=1};
};

// Usage:
cout << Fib<8>::RET << endl;

Figure 7: Static implementation of the recursive version of Fib<>

The recursive definitions need not be inefficient when implemented statically. For
example, the static translation of the recursive definition of Fibonacci numbers does
not suffer from the same inefficiencies as its dynamic counterpart. The static code
instantiates Fib<> only on the first use with a given argument, and subsequent uses
with the same argument do not require new instantiations.

Static equivalents to the standard runtime looping statements (while, do, and for)
can also be implemented. They allow easy translation from dynamic code with looping
statements into static code.
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4.2.1 While-Loop WHILE<>

A conventional while-loop takes a condition and executes a user-defined body in each
iteration as long as the condition is true. A static loop will also take a condition as
parameter and it takes a code (template metafunction) to execute in each iteration.
Because static code does not allow side effects, each iteration will have to receive initial
state and return new state explicitly. The state variables for WHILE<> can be stored to
an environment type, which keeps the state of the static computation. The metafunction
takes an environment as a parameter and returns a new one. The continuation condition
can be done as a metafunction, which takes an environment and returns the information
on whether the loop should keep going on.

While the use of WHILE<> is a quite complex because the requirement of three dif-
ferent templates, the situation should be improved by merging the environment into the
statement. Also, with help of IF<> the implementation can be considerably simplified.

namespace intimate
{ template<class Statement>

struct STOP
{ typedef Statement RET;
};

};
template<class Condition, class Statement>
struct WHILE
{ typedef typename

IF<Condition::template Code<Statement::RET,
WHILE<Condition,typename Statement::Next>,
intimate::Stop<Statement>
>::RET::RET RET;

};

Figure 8: Static implementation of WHILE<>
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template<int i_, int x_, int y>
struct FibStat
{ enum { i = i_,

x = x_
};

typedef FibStat<i+1, x+y, x> Next;
};
//continue condition for Fib<>
template<int n>
struct FibCond
{ template<class Statement>
struct Code
{ enum { RET = Statement::i < n };
};

};
//Fib<>
template<int n>
struct Fib
{ enum { RET = WHILE<FibCond<n>,FibStat<1,1,0>

>::RET::x };
};

Figure 9: Iterative version of Fib<>
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5 Problems with Template Metaprogramming
Unfortunately, the template metaprogramming has a number of problems.

• Debugging: Debugging template metaprograms is very difficult as there is no de-
bugger for the C++ compilation process and the length of typenames in template
metaprogramming can easily reach thousands of characters due to deep template
nesting.

• Error reporting: There is no way for a template metaprogram to output a string
during compilation.

• Readability of the code: The readability of template metacode is not very high.
Template metaprogramming is not a result of careful language design but an
accident.

• Compilation times: Template metaprograms may extend compilation times by
orders of magnitude. Template metacode is interpreted rather than compiled.

• Compiler limits: Complex computations quickly lead to very complex types in
template metaprogramming. The complexity and size limits of different compil-
ers vary, but the limits can be quickly reached.

• Limitations of expression templates: There are no variables through which in-
formation can be passed between expressions at compile time in C++. Also, the
lack of “typeof” features in C++ is a problem. The result type of the expression
has to be manually computed.

• Protability: Template metaprogramming is based on many advanced C++ lan-
guage features, which might not be supported by all compilers (even though they
are in ISO C++ standard).

The complexity of template metaprograms is more or less limited by the compiler
limits, compilation times, and debugging problems. Intentional Programming[1] does
not suffer from these problems, but requires special programming environment instead
of stardard C++ compiler.
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