
The Java Language
Implementation

CS 242 2012

Reading

• Chapter 13, sections 13.4 and 13.5

• Optimizing Dynamically-Typed Object-Oriented Languages With Polymorphic Inline

Caches, pages 1–5.

Outline

• Java virtual machine overview
– Loader and initialization

– Linker and verifier

– Bytecode interpreter

• JVM Method lookup
– four different bytecodes

• Verifier analysis

• Method lookup optimizations (beyond Java)

• Java security
– Buffer overflow

– Java “sandbox”

– Stack inspection

Java Implementation

• Compiler and Virtual Machine
– Compiler produces bytecode
– Virtual machine loads classes on demand, verifies

bytecode properties, interprets bytecode

• Why this design?
– Bytecode interpreter/compilers used before

• Pascal “pcode”; Smalltalk compilers use bytecode

– Minimize machine-dependent part of implementation
• Do optimization on bytecode when possible
• Keep bytecode interpreter simple

– For Java, this gives portability
• Transmit bytecode across network

A.class A.java
Java

Compiler

B.class

Loader

Verifier

Linker

Bytecode Interpreter

Java Virtual Machine

Compile source code

Java Virtual Machine Architecture

JVM memory areas

• Java program has one or more threads

• Each thread has its own stack

• All threads share same heap

method

area
heap

Java

stacks

PC

registers

native

method

stacks

Class loader

• Runtime system loads classes as needed
– When class is referenced, loader searches for file of

compiled bytecode instructions

• Default loading mechanism can be replaced
– Define alternate ClassLoader object

• Extend the abstract ClassLoader class and implementation

• ClassLoader does not implement abstract method loadClass,
but has methods that can be used to implement loadClass

– Can obtain bytecodes from alternate source
• VM restricts applet communication to site that supplied

applet

Example issue in class loading and linking:

Static members and initialization
class ... {

 /* static variable with initial value */

 static int x = initial_value

 /* ---- static initialization block --- */

 static { /* code executed once, when loaded */ }

}

• Initialization is important
– Cannot initialize class fields until loaded

• Static block cannot raise an exception
– Handler may not be installed at class loading time

JVM Linker and Verifier

• Linker

– Adds compiled class or interface to runtime system

– Creates static fields and initializes them

– Resolves names

• Checks symbolic names and replaces with direct references

• Verifier

– Check bytecode of a class or interface before loaded

– Throw VerifyError exception if error occurs

Verifier

• Bytecode may not come from standard compiler
– Evil hacker may write dangerous bytecode

• Verifier checks correctness of bytecode
– Every instruction must have a valid operation code
– Every branch instruction must branch to the start of

some other instruction, not middle of instruction
– Every method must have a structurally correct

signature
– Every instruction obeys the Java type discipline

Last condition is complicated .

Bytecode interpreter

• Standard virtual machine interprets instructions
– Perform run-time checks such as array bounds
– Possible to compile bytecode class file to native code

• Java programs can call native methods
– Typically functions written in C

• Multiple bytecodes for method lookup
– invokevirtual - when class of object known

– invokeinterface - when interface of object known

– invokestatic - static methods

– invokespecial - some special cases

Type Safety of JVM

• Run-time type checking
– All casts are checked to make sure type safe

– All array references are checked to make sure the array
index is within the array bounds

– References are tested to make sure they are not null
before they are dereferenced

• Additional features
– Automatic garbage collection

– No pointer arithmetic

 If program accesses memory, that memory is allocated

to the program and declared with correct type

JVM uses stack machine

• Java
Class A extends Object {
 int I;
 void f(int val) { i = val + 1;}
}

• Bytecode
Method void f(int)
 aload 0 ; object ref this
 iload 1 ; int val
 iconst 1
 iadd ; add val +1
 putfield #4 <Field int i>
 return

data area

local
variables

operand

stack

Return addr,

exception info,

Const pool res.

JVM Activation Record

refers to constant pool

Field and method access

• Instruction includes index into constant pool

– Constant pool stores symbolic names

– Store once, instead of each instruction, to save
space

• First execution

– Use symbolic name to find field or method

• Second execution

– Use modified “quick” instruction to simplify search

Outline

• Java virtual machine overview
– Loader and initialization

– Linker and verifier

– Bytecode interpreter

• JVM Method lookup
– four different bytecodes

• Verifier analysis

• Method lookup optimizations (beyond Java)

• Java security
– Buffer overflow

– Java “sandbox”

– Stack inspection

Two cases in more detail

• Source code provides interface to object
– Method lookup using Smalltalk-like search process

– Cache last offset in case next lookup is same class

• Source code provides class or superclass
– Method lookup uses Smalltalk-like search first

time
• Reason: run-time class loading; compiler doesn’t know

representation of classes in different class files

– Rewrite bytecode so that fixed offset on next
lookup

invokeinterface <method-spec>

• Sample code
 void add2(Incrementable x) { x.inc(); x.inc(); }

• Search for method

– find class of the object operand (operand on stack)

• must implement the interface named in <method-spec>

– search the method table for this class

– find method with the given name and signature

• Call the method

– Usual function call with new activation record, etc.

Why is search necessary?

interface A {
 public void f();
}
interface B {
 public void g();
}
class C implements A, B {
 …;
}

Class C cannot have method f first and method g first

But if class instead of interface…

• Sample code
 void deposit1(Account a) { a.deposit(1) …}

• Class hierarchy

class Account {
 public void deposit(int i);
}
class InterestAccount extends Account {
 …
}

 Single inheritance guarantees derived class vtable uses same order as base
class vtable; remains true if class also implements many interfaces

invokevirtual <method-spec>

• Similar to invokeinterface, but class is known

• Search for method
– search the method table of this class

– find method with the given name and signature

• Can we use static type for efficiency?
– Each execution of an instruction will be to object from

subclass of statically-known class

– Constant offset into vtable
• like C++, but dynamic loading makes search useful first time

– See next slide

Bytecode rewriting: invokevirtual

• After search, rewrite bytcode to use fixed offset
into the vtable. No search on second execution.

inv_virt_quick

vtable offset

Constant pool

“A.foo()”

Bytecode

invokevirtual

Bytecode rewriting: invokeinterface

Cache address of method; check class on second use

inv_int_quick

Constant pool

“A.foo()”

Bytecode

invokeinterface

“A.foo()”

Outline

• Java virtual machine overview
– Loader and initialization

– Linker and verifier

– Bytecode interpreter

• JVM Method lookup
– four different bytecodes

• Verifier analysis

• Method lookup optimizations (beyond Java)

• Java security
– Buffer overflow

– Java “sandbox”

– Stack inspection

Bytecode Verifier

• Let’s look at one example to see how this works

• Correctness condition

– No operations should be invoked on an object until it
has been initialized

• Simplified bytecode instructions

– new class allocate memory for object

– init class initialize object on top of stack

– use class use object on top of stack

 (idealization for purpose of presentation)

Object creation

• Example:
Point p = new Point(3)

1: new Point

2: dup

3: iconst 3

4: init Point

• No easy pattern to match

• Multiple refs to same uninitialized object
– Need some form of alias analysis

Java source

bytecode

Alias Analysis

• Other situations:

 or

• Equivalence classes based on line where
object was created

 1: new P

2: new P

3: init P

init P

new P

Tracking initialize-before-use

• Alias analysis uses line numbers
– Two pointers to “unitialized object created at line 47”

are assumed to point to same object
– All accessible objects must be initialized before jump

backwards (possible loop)

• Oversight in early treatment of local subroutines
– Used in implementation of try-finally
– Object created in finally not necessarily initialized

• No clear security consequence
– Bug fixed

 Have proved correctness of modified verifier for init

Aside: bytecodes for try-finally

• Idea
– Finally clause implemented as lightweight subroutine

• Example code
 static int f(boolean bVal) {

 try {

 if (bVal) { return 1; }

 return 0;

 }

 finally {

 System.out.println(“About to return");

 } }

• Bytecode on next slide
– Print before returning, regardless of which return is executed

Bytecode

0 iload_0 // Push local variable 0

1 ifeq 11 // Jump on test

4 iconst_1 // Push int 1

5 istore_3 // Pop an int (the 1), store into local variable 3

6 jsr 24 // Jump to the mini-subroutine for the finally clause

9 iload_3 // Push local variable 3 (the 1)

10 ireturn // Return int on top of the stack (the 1)

.

.

24 astore_2 // Pop the return address, store it in local variable 2

25 getstatic #8 // Get a reference to java.lang.System.out

28 ldc #1 // Push <String "About to return."> from the constant pool

30 invokevirtual #7 // Invoke System.out.println()

33 ret 2 // Return to return address stored in local variable 2

(from http://www.javaworld.com/javaworld/

jw-02-1997/jw-02-hood.html?page=2)

variables 1 and 2 contain references

to two different objects which are both

“uninitialized object created on line 11”

Bug in Sun’s JDK 1.1.4

1: jsr 10

2: store 1

3: jsr 10

4: store 2

5: load 2

6: init P

7: load 1

8: use P

9: halt

10: store 0

11: new P

12: ret 0

Bytecode verifier not designed for code that
creates uninitialized object in jsr subroutine

Outline

• Java virtual machine overview
– Loader and initialization

– Linker and verifier

– Bytecode interpreter

• JVM Method lookup
– four different bytecodes

• Verifier analysis

• Method lookup optimizations (HotSpot VM, …)

• Java security
– Buffer overflow

– Java “sandbox”

– Stack inspection

JIT Compilation
Avoid interpreting

LOAD R0

MOV R1 2

ADD R1 R2

,,,

010010100

1001100010

0101101000

110

Source Byte Code Machine Code

Method can be executed as interpreted byte code

Compiled to machine code, initially or on nth execution

Compiled native code stored in cache

 If cache fills, previously compiled method flushed

Avoid method search

Lookup Cache

• Cache of recently used methods
– indexed by (receiver impl-type, message name) pairs

• When a message is sent, compiler first consults
cache
– if found: invokes associated code
– if absent: performs general lookup and potentially

updates cache

• Berkeley Smalltalk would have been 37% slower
without this optimization

Note: some researchers use “type” to refer to the method lookup table.

This is different from “type” as object interface.

Static “Type” Prediction

• Compiler predicts “types” that are unknown but likely:
– “Type” here means method lookup table, or “implementation type”

– Arithmetic operations (+, -, <, etc.) have small integers as their
receivers 95% of time in Smalltalk-80.

– ifTrue had Boolean receiver 100% of the time.

• Compiler inlines code (and tests to confirm guess):

if impl-type = smallInt jump to method_smallInt

 else call general_lookup

Avoid method search

Inline Caches

• Track message-send from a call site :
– general lookup routine invoked

– call site back-patched
• is previous method still correct?

– yes: invoke code directly

– no: proceed with general lookup & backpatch

• Successful about 95% of the time

• All compiled implementations of Smalltalk
and Self use inline caches

Avoid method lookup

Polymorphic Inline Caches

• Typical call site has <10 distinct receiver types
– So often can cache all receivers

• At each call site, for each new receiver, extend
patch code:

– Order clauses by frequency
– Inline short methods into PIC code
– After some threshold, revert to simple inline cache

 if impl-type = rectangle jump to method_rect

 if impl-type = circle jump to method_circle

 call general_lookup

Avoid method lookup

Customized Compilation

• Compile several copies of each method, one
for each receiver type

• Within each copy:
– Compiler knows the type of self

– Calls through self can be statically selected and
inlined

• Enables downstream optimizations

• Increases code size

Inline methods

Implementation Type Analysis

• Constructed by compiler by flow analysis.

• “Type": set of possible vtables for object
– Singleton: know vtable statically

– Union/Merge: know expression has one of a fixed
collection of vtables

– Unknown: know nothing about expression

• If singleton, we can inline method

• If type set is small, we can insert type test and
create branch for each possible receiver (type
casing)

Inline methods

Message Splitting

• Type information above a merge
point is often better

• Move message send “before”
merge point:
– duplicates code

– improves type information

– allows more inlining

Inline methods

Inline methods

PICS as Type Source

• Polymorphic inline caches build a call-site
specific type database as the program runs

• Compiler can use this runtime information
rather than the result of a static flow analysis
to build type cases

• Must wait until PIC has collected information
– When to recompile?
– What should be recompiled?

• Initial fast compile yielding slow code; then
dynamically recompile hotspots

Performance Improvements

• Initial version of Self was 4-5 times slower
than optimized C.

• Adding type analysis and message splitting got
within a factor of 2 of optimized C.

• Replacing type analysis with PICS improved
performance by further 37%.

Best Self compiler was within a

factor of 2 of optimized C

These techniques are commonly

used for Java, JavaScript, …

Impact on Java

Self with

PICs

Animorphics

Java

Java

Hotspot

Sun cancels Self

Java becomes popular

Sun buys A.J.

Animorphics

Smalltalk

Outline

• Java virtual machine overview
– Loader and initialization

– Linker and verifier

– Bytecode interpreter

• JVM Method lookup
– four different bytecodes

• Verifier analysis

• Method lookup optimizations (beyond Java)

• Java security
– Buffer overflow

– Java “sandbox”

– Stack inspection

Java Security

• Security
– Prevent unauthorized use of computational resources

• Java security
– Java code can read input from careless user or

malicious attacker

– Java code can be transmitted over network –

 code may be written by careless friend or malicious
attacker

 Java is designed to reduce many security risks

Java Security Mechanisms

• Sandboxing

– Run program in restricted environment

• Analogy: child’s sandbox with only safe toys

– This term refers to

• Features of loader, verifier, interpreter that restrict program

• Java Security Manager, a special object that acts as access
control “gatekeeper”

• Code signing

– Use cryptography to establish origin of class file

• This info can be used by security manager

Buffer Overflow Attack

• Most prevalent general security problem today

– Large number of CERT advisories are related to buffer
overflow vulnerabilities in OS, other code

• General network-based attack

– Attacker sends carefully designed network msgs

– Input causes privileged program (e.g., Sendmail) to do
something it was not designed to do

• Does not work in Java

– Illustrates what Java was designed to prevent

Sample C code to illustrate attack

void f (char *str) {

 char buffer[16];

 …

 strcpy(buffer,str);

}

void main() {

 char large_string[256];

 int i;

 for(i = 0; i < 255; i++)

 large_string[i] = 'A';

 f(large_string);

}

• Function
– Copies str into buffer until null

character found

– Could write past end of buffer, over
function retun addr

• Calling program
– Writes 'A' over f activation record

– Function f “returns” to location
0x4141414141

– This causes segmentation fault

• Variations
– Put meaningful address in string

– Put code in string and jump to it !!

See: Smashing the stack for fun and profit

Java Sandbox

• Four complementary mechanisms
– Class loader

• Separate namespaces for separate class loaders

• Associates protection domain with each class

– Verifier and JVM run-time tests
• NO unchecked casts or other type errors, NO array overflow

• Preserves private, protected visibility levels

– Security Manager
• Called by library functions to decide if request is allowed

• Uses protection domain associated with code, user policy

• Coming up in a few slides: stack inspection

Security Manager

• Java library functions call security manager

• Security manager object answers at run time

– Decide if calling code is allowed to do operation

– Examine protection domain of calling class

• Signer: organization that signed code before loading

• Location: URL where the Java classes came from

– Uses the system policy to decide access
permission

Sample SecurityManager methods

checkExec

Checks if the system commands can be
executed.

checkRead Checks if a file can be read from.

checkWrite Checks if a file can be written to.

checkListen Checks if a certain network port can be listened
to for connections.

checkConnect Checks if a network connection can be created.

checkCreate
ClassLoader

Check to prevent the installation of additional
ClassLoaders.

Stack Inspection

• Permission depends on

– Permission of calling
method

– Permission of all methods
above it on stack

• Up to method that is trusted
and asserts this trust

java.io.FileInputStream

method f

method g

method h

Example: privileged printing

privPrint(f) = (* owned by system *)

{

 checkPrivilege(PrintPriv);

 print(f);

}

foreignProg() = (* owned by Joe *)

{

 …; privPrint(file); …;

}

Stack Inspection

• Stack frames are annotated with names of
owners and any enabled privileges

• During inspection, stack frames are searched
from most to least recent:

– fail if a frame belonging to someone not
authorized for privilege is encountered

– succeed if activated privilege is found in frame

Stack Inspection

• Permission depends on

– Permission of calling method

– Permission of all methods
above it on stack

• Up to method that is trusted
and asserts this trust

Many details omitted here

java.io.FileInputStream

method f

method g

method h

Stories: Netscape font / passwd bug; Shockwave plug-in

Outline

• Java virtual machine overview
– Loader and initialization

– Linker and verifier

– Bytecode interpreter

• JVM Method lookup
– four different bytecodes

• Verifier analysis

• Method lookup optimizations (beyond Java)

• Java security
– Buffer overflow

– Java “sandbox”

– Stack inspection

