
Object typing and subtypes

CS 242 2012

Reading
Chapter 10, section 10.2.3

Chapter 11, sections 11.3.2 and 11.7

Chapter 12, section 12.4

Chapter 13, section 13.3

Subtyping and Inheritance

• Interface

– The external view of an object

• Subtyping

– Relation between interfaces

• Implementation

– The internal representation of an object

• Inheritance

– Relation between implementations

Example: Smalltalk Point class

 class var pi

 super class Object

 class name Point

 instance var x y

 class messages and methods

…names and code for methods...

 instance messages and methods

…names and code for methods...

Subclass: ColorPoint

 class var

 super class Point

 class name ColorPoint

 instance var color

 class messages and methods

 instance messages and methods

 newX:xv Y:yv C:cv … code …

 draw … code …

 color | | ^color

add instance
variable

add method

override Point
method

Object Interfaces

• Interface
 The messages understood by an object

• Example: point
 x:y: set x,y coordinates of point

 moveDx:Dy: method for changing location

 x returns x-coordinate of a point

 y returns y-coordinate of a point

 draw display point in x,y location on screen

• The interface of an object is its type

Subtyping

• If interface A contains all of interface B,
then A objects can also be used B objects.

Colored_point interface contains Point
Colored_point is a subtype of Point

Point
 x:y:
 moveDx:Dy:
 x
 y
 draw

Colored_point
 x:y:
 moveDx:Dy:
 x
 y
 color
 draw

Implicit Object types – Smalltalk/JS

• Each object has an interface
– Smalltalk: set of instance methods declared in class

– Example:
Point { x:y:, moveDx:Dy:, x, y, draw}

ColorPoint { x:y:, moveDx:Dy:, x, y, color, draw}

– This is a form of type
Names of methods, does not include type/protocol of arguments

• Object expression and type
– Send message to object

p draw p x:3 y:4

q color q moveDx: 5 Dy: 2

– Expression OK if message is in interface

Subtyping

• Relation between interfaces
– Suppose expression makes sense

p msg:pars -- OK if msg is in interface of p

– Replace p by q if interface of q contains interface of p

• Subtyping
– If interface is superset, then a subtype
– Example: ColorPoint subtype of Point
– Sometimes called “conformance”

Can extend to more detailed interfaces that include types of parameters

Subtyping and Inheritance

• Smalltalk/JavaScript subtyping is implicit

– Not a part of the programming language

– Important aspect of how systems are built

• Inheritance is explicit

– Used to implement systems

– No forced relationship to subtyping

Smalltalk Collection Hierarchy

Collection

Set

Sorted collection

Indexed

Array

Dictionary

 Subtyping

 Inheritance

Updatable

isEmpty, size, includes: , …

add:

remove:

sortBlock:

…

at:Put:

at:

associationAt:

replaceFrom:to:with:

C++ Subtyping

• Subtyping in principle
– A <: B if every A object can be used without type error

whenever a B object is required

– Example:
Point: int getX();

 void move(int);

ColorPoint: int getX();

 int getColor();

 void move(int);

 void darken(int tint);

• C++: A <: B if class A has public base class B

 Public members

Public members

Implementation of subtyping

• No-op
– Dynamically-typed languages
– C++ object representations (single-inheritance only)

circle *c = new Circle(p,r);
shape *s = c; // s points to circle c

• Conversion
– C++ object representations w/multiple-inheritance

C *pc = new C;
B *pb = pc;
A *pa = pc;
// may point to different position in object

C

A B

Smalltalk/JavaScript Representation

2

3

x

y newX:Y:

draw

move

Point object Point class Template

Method dictionary

...

4

5

x

y newX:Y:C:

color

draw

ColorPoint object
ColorPoint class Template

Method dictionary

red

color

This is a schematic diagram meant to illustrate the main idea. Actual implementations may differ.

C++ Run-time representation

3

5

blue

Point object

ColorPoint object

x

vptr

x

vptr

c

Point vtable

ColorPoint vtable

Code for move

Code for move

Code for darken

Data at same offset Function pointers at same offset

C++: virtual function lookup

3

5

blue

Point object

ColorPoint object

x

vptr

x

vptr

c

Point vtable

ColorPoint vtable

Code for move

Code for move

Code for darken

Point p = new Pt(3);

p->move(2); // (*(p->vptr[0]))(p,2)

C++: virtual function lookup, part 2

3

5

blue

Point object

ColorPoint object

x

vptr

x

vptr

c

Point vtable

ColorPoint vtable

Code for move

Code for move

Code for darken

Point cp = new ColorPt(5,blue);

cp->move(2); // (*(cp->vptr[0]))(cp,2)

C++ Multiple Inheritance

• Offset in vtbl is used in call to pb->f, since C::f may refer to A
data that is above the pointer pb

• Call to pc->g can proceed through C-as-B vtbl

C object

C

 A B

vptr

B data

vptr

A data

C data

 B object

 A object

& C::f 0

C-as-A vtbl

C-as-B vtbl

& B::g 0

& C::f

pa, pc

pb

Independent classes not subtypes

class Point {

 public:

 int getX();

 void move(int);

 protected: ...

 private: ...

};

class ColorPoint {

 public:

 int getX();

 void move(int);

 int getColor();

 void darken(int);

 protected: ...

 private: ...

};

• C++ does not treat ColorPoint <: Point as written

– Need public inheritance ColorPoint : public Point

– Why??

Why C++ design?

• Client code depends only on public interface
– In principle, if ColorPoint interface contains Point

interface, then any client could use ColorPoint in place
of point

– However -- offset in virtual function table may differ
– Lose implementation efficiency (like Smalltalk)

• Without link to inheritance
– Subtyping leads to loss of implementation efficiency

• Also encapsulation issue:
– Subtyping based on inheritance is preserved under

modifications to base class …

Recurring subtype issue: downcast

• The Simula type of an object is its class

• Simula downcasts are checked at run-time

• Example:
 class A(…); ...

 A class B(…); ...

 ref (A) a :- new A(…)

 ref (B) b :- new B(…)

 a := b /* OK since B is subclass of A */

 ...

 b := a /* compiles, but run-time test */

 A

B C

up down

Function subtyping

• Subtyping principle
– A <: B if an A expression can be safely used in any

context where a B expression is required

• Subtyping for function results
– If A <: B, then C A <: C B

• Subtyping for function arguments
– If A <: B, then B C <: A C

• Terminology
– Covariance: A <: B implies F(A) <: F(B)
– Contravariance: A <: B implies F(B) <: F(A)

Examples

• If circle <: shape, then

C++ compilers recognize limited forms of function subtyping

circle shape

shape shape circle circle

shape circle

Subtyping with functions

• In principle: ColorPoint <: Point

• In practice: This is covariant case; contravariance is another story

class Point {

 public:

 int getX();

 virtual Point *move(int);

 protected: ...

 private: ...

};

class ColorPoint: public Point {

 public:

 int getX();

 int getColor();

 ColorPoint * move(int);

 void darken(int);

 protected: ...

 private: ...

};

Inherited, but repeated
here for clarity

Subtyping principles (recap)

• “Width” subtyping for object types
 i > j
 [m1:1, …, mi: i] <: [m1:1, …, mj: j]

• “Depth” subtyping for object types

 i <: i
 [m1: 1, …, mi: J] <: [m1:1, …, mj: j]

• Function subtyping

 ’ <: <: ’
 <: ’ ’

i j

Subtyping recursive types

• Principle

 s <:t (s) <: (t)

 type s = (s) <: type t = (t)

• Example

 cp <: p { … mv: intcp} <: { … mv: intp }

type cp = { … mv: intcp} <: type p = { … mv: intp}

s not in (t)

t not in (s)

Java Types

• Two general kinds of types
– Primitive types – not objects

• Integers, Booleans, etc

– Reference types

• Classes, interfaces, arrays

• No syntax distinguishing Object * from Object

• Static type checking
– Every expression has type, determined from its parts

– Some auto conversions, many casts are checked at run time

– Example, assuming A <: B

• If A x, then can use x as argument to method that requires B

• If B x, then can try to cast x to A

• Downcast checked at run-time, may raise exception

Classification of Java types

Reference Types

Primitive Types

int

Shape

Object[]

Object

Shape[]

boolean …

Throwable

Square Square[] Circle Circle[]

long float byte

Exception

types

user-defined arrays

Subtyping

• Primitive types
– Conversions: int -> long, double -> long, …

• Class subtyping similar to C++
– Subclass produces subtype

– Single inheritance => subclasses form tree

• Interfaces
– Completely abstract classes

• no implementation

– Multiple subtyping

• Interface can have multiple subtypes (implements, extends)

• Arrays
– Covariant subtyping – not consistent with semantic principles

Java class subtyping

• Signature Conformance
– Subclass method signatures must conform to superclass

• Three ways signature could vary
– Argument types

– Return type

– Exceptions

– How much conformance is needed in principle?

• Java rule
– Java 1.1: Arguments and returns must have identical types,

may remove exceptions

– Java 1.5: covariant return type specialization

Interface subtyping: example

interface Shape {
 public float center();
 public void rotate(float degrees);
}
interface Drawable {
 public void setColor(Color c);
 public void draw();
}
class Circle implements Shape, Drawable {
 // does not inherit any implementation
 // but must define Shape, Drawable methods
}

Q: can interfaces be recursive?

Properties of interfaces

• Flexibility
– Allows subtype graph instead of tree
– Avoids problems with multiple inheritance of

implementations (remember C++ “diamond”)

• Cost
– Offset in method lookup table not known at compile
– Different bytecodes for method lookup

• one when class is known
• one when only interface is known

– search for location of method
– cache for use next time this call is made (from this line)

More about this later …

Array types

• Automatically defined
– Array type T[] exists for each class, interface type T
– Cannot extend array types (array types are final)
– Multi-dimensional arrays are arrays of arrays: T[] []

• Treated as reference type
– An array variable is a pointer to an array, can be null
– Example: Circle[] x = new Circle[array_size]
– Anonymous array expression: new int[] {1,2,3, ... 10}

• Every array type is a subtype of Object[], Object
– Length of array is not part of its static type

Array subtyping

• Covariance
– if S <: T then S[] <: T[]

• Standard type error
 class A {…}

 class B extends A {…}

 B[] bArray = new B[10]

 A[] aArray = bArray // considered OK since B[] <: A[]

 aArray[0] = new A() // compiles, but run-time error

 // raises ArrayStoreException

Covariance problem again …

• Simula problem

– If A <: B, then A ref <: B ref

– Needed run-time test to prevent bad assignment

– Covariance for assignable cells is not right in principle

• Explanation

– interface of “T reference cell” is

 put : T T ref

 get : T ref T

– Remember covariance/contravariance of functions

Afterthought on Java arrays

Date: Fri, 09 Oct 1998 09:41:05 -0600

From: bill joy

Subject: …[discussion about java genericity]

actually, java array covariance was done for less noble reasons …: it made some
generic "bcopy" (memory copy) and like operations much easier to write...

I proposed to take this out in 95, but it was too late (...).

i think it is unfortunate that it wasn't taken out...

it would have made adding genericity later much cleaner, and [array
covariance] doesn't pay for its complexity today.

 wnj

Java Exceptions

• Similar basic functionality to other languages
– Constructs to throw and catch exceptions

– Dynamic scoping of handler

• Some differences
– An exception is an object from an exception class

– Subtyping between exception classes
• Use subtyping to match type of exception or pass it on …

• Similar functionality to ML pattern matching in handler

– Type of method includes exceptions it can throw
• Actually, only subclasses of Exception (see next slide)

Exception Classes

If a method may throw a checked exception, then exception
must be in the type of the method

Throwable

Exception Runtime

Exception
Error

User-defined

exception classes
Unchecked exceptions

checked

exceptions

Why define new exception types?

• Exception may contain data

– Class Throwable includes a string field so that
cause of exception can be described

– Pass other data by declaring additional fields or
methods

• Subtype hierarchy used to catch exceptions

 catch <exception-type> <identifier> { … }

 will catch any exception from any subtype of
exception-type and bind object to identifier

Subtyping concepts

• Type of an object represents its interface
• Subtyping has associated substitution principle

– If A <: B, then A objects can be used in place of B objects

• Implicit subtyping in dynamically typed lang
– Relation between interfaces determines substitutivity

• Explicit subtyping in statically typed languages
– Type checker may recognize some subtyping
– Issues: programming style, implementation efficiency

• Covariance and contravariance
– Function argument types reverse order
– Problems with Java array covariance

Principles

• Object “width” subtyping

• Function covariance, contravariance

• Object type “depth” subtyping

• Subtyping recursive types

Applications of principles

• Dynamically typed languages
– If A <: B in principle, then can use A objects in place of B objects

• C++
– Class subtyping only when public base class
– Compiler allows width subtyping, covariant depth subtyping.

(Think about why…)

• Java
– Class subtyping only when declared using “extends”
– Class and interface subtyping when declared
– Compiler allows width subtyping, covariant depth subtyping
– Additional typing issues related to generics

