
Objects, Encapsulation, 
Inheritance (2) 

CS 242 2012 

Reading (two lectures) 

 Chapter 10, except section 10.4 

 Chapter 11, sections 11.1, 11.2, 11.3.1  and 11.4., 11.5, 11.6 only 

 Chapter 12, sections 12.1, 12.2, 12.3 and 12.5 only 

 Chapter 13, sections 13.1 and 13.2 only  



Outline 

• Central concepts in object-oriented languages 
– Dynamic lookup, encapsulation, subtyping, inheritance 

• Objects as activation records 
– Simula – implementation as activation records with static scope 

• Pure dynamically-typed object-oriented languages 
– Object implementation and run-time lookup 

– Class-based languages (Smalltalk) 

– Prototype-based languages (Self, JavaScript) 

• Statically-typed object-oriented languages  (this lecture) 
– C++ – using static typing to eliminate search 

           – problems with C++ multiple inheritance 

– Java – using Interfaces to avoid multiple inheritance 

 

 



C++ Background 

• C++ is an object-oriented extension of C 
• C was designed by Dennis Ritchie at Bell Labs 

– used to write Unix, based on BCPL 

• C++ designed by Bjarne Stroustrup at Bell Labs 
– His original interest at Bell was research on simulation 
– Early extensions to C are based primarily on Simula 
– Called “C with classes” in early 1980’s 
– Popularity increased in late 1980’s and early 1990’s 
– Features were added incrementally 

    Classes, templates, exceptions, multiple inheritance, type 
tests... 



C++ Design Goals 

• Provide object-oriented features in C-based 
language, without compromising efficiency 
– Backwards compatibility with C  

– Better static type checking 

– Data abstraction 

– Objects and classes 

– Prefer efficiency of compiled code where possible 

• Important principle 
– If you do not use a feature, your compiled code 

should be as efficient as if the language did not 
include the feature.             (compare to Smalltalk) 



How successful? 

• Given the design goals and constraints,  
– this is a very well-designed language 

• Many users -- tremendous popular success 

• However, very complicated design 
– Many features with complex interactions 

– Difficult to predict from basic principles 

– Most users chose a subset of language  
• Full language is complex and unpredictable 

– Many implementation-dependent properties 



Significant constraints 

• C has specific machine model 

– Access to underlying architecture 

• No garbage collection 

– Consistent with goal of efficiency 

– Need to manage object memory explicitly 

• Local variables stored in activation records 

– Objects treated as generalization of structs 

• Objects may be allocated on stack and treated as L-values 

• Stack/heap difference is visible to programmer 



C++ Object System 

• Object-oriented features 
– Classes 

– Objects, with dynamic lookup of virtual functions 

– Inheritance 
• Single and multiple inheritance 

• Public and private base classes 

– Subtyping  
• Tied to inheritance mechanism 

– Encapsulation 
• Public, private, protected visibility 



Some (good?) decisions 

• Public, private, protected levels of visibility 
– Public: visible everywhere 

– Protected: within class and subclass declarations 

– Private: visible only in class where declared 

• Friend functions and classes 
– Careful attention to visibility and data abstraction 

• Allow inheritance without subtyping 
– Better control of subtyping than without private 

base classes 



Some problem areas 

• Casts 
– Sometimes no-op, sometimes not (e.g., multiple inheritance) 

• Lack of garbage collection 
– Memory management is error prone 

• Constructors, destructors are helpful  // smart pointers? 

• Objects allocated on stack 
– Better efficiency, interaction with exceptions 

– But assignment works badly, possible dangling pointers 

• Overloading 
– Too many code selection mechanisms? 

• Multiple inheritance 
– Emphasis on efficiency leads to complicated behavior 



Sample class: one-dimen. points 

class Pt { 
   public: 
        Pt(int xv); 
        Pt(Pt* pv); 
        int getX(); 
        virtual void move(int dx); 
    protected: 
         void setX(int xv); 
    private: 
         int x;                 
     }; 

 

 Overloaded constructor 

Public read access to private data 

Virtual function 

Protected write access L 

Private data  



 Virtual functions 

• Member functions are either 
– Virtual, if explicitly declared or inherited as virtual 
– Non-virtual otherwise 

• Virtual functions 
– Accessed by indirection through ptr in object 
– May be redefined in derived (sub) classes 

• Non-virtual functions 
– Are called in the usual way. Just ordinary functions. 
– Cannot redefine in derived classes (except overloading)  

• Pay overhead only if you use virtual functions 

Xinyu
高亮

Xinyu
高亮



Sample derived class 

class ColorPt: public Pt {    
   public: 
        ColorPt(int xv,int cv); 
        ColorPt(Pt* pv,int cv); 
        ColorPt(ColorPt* cp); 
        int getColor(); 
        virtual void move(int dx); 
        virtual void darken(int tint); 
   protected: 
        void setColor(int cv); 
   private: 
        int color; 
    }; 

Public base class gives supertype 

 Overloaded constructor 

Non-virtual function 

 Virtual functions 

Protected write access 

Private data 



Run-time representation 

3 

5 

blue 

 

 

 

Point object 

ColorPoint object 

x 

vptr 

x 

vptr 

c 

Point vtable 

ColorPoint vtable 

Code for move 

Code for move 

Code for darken 

  

  

 

Data at same offset Function pointers at same offset 



Compare to Smalltalk/JavaScript 

2 

3 

x 

y newX:Y: 

... 

move 

Point object Point class Template 

Method dictionary 
 

 

 

 

 

... 

 

  

4 

5 

x 

y newX:Y:C: 

color 

move 

ColorPoint object 
ColorPoint class Template 

Method dictionary 

  

 

 

red 

color 

 

 

 

 

 

 



Why is  C++  lookup simpler? 

• Smalltalk/JavaScript have no static type system 
– Code  obj.operation(parms)  could refer to any object 

– Need to find method using pointer from object 

– Different classes will put methods at different place in 
method dictionary 

• C++ type gives compiler some superclass 
– Offset of data, fctn ptr same in subclass and superclass 

– Offset of data and  function ptr known at compile time 

– Code p->move(x) compiles to  equivalent of 

  (*(p->vptr[0]))(p,x) if move is first function in vtable  

 
data passed to member function; see next slides 



Looking up methods 

3 

5 

blue 

 

 

Point object 

ColorPoint object 

x 

vptr 

x 

vptr 

c 

Point vtable 

ColorPoint vtable 

Code for move 

Code for move 

Code for darken 

  

  

 

Point p = new Pt(3); 

p->move(2);            // (*(p->vptr[0]))(p,2)  



Looking up methods, part 2 

3 

5 

blue 

 

 

Point object 

ColorPoint object 

x 

vptr 

x 

vptr 

c 

Point vtable 

ColorPoint vtable 

Code for move 

Code for move 

Code for darken 

  

  

 

Point cp = new ColorPt(5,blue); 

cp->move(2);         // (*(cp->vptr[0]))(cp,2)  



Calls to virtual functions 

• One member function may call another 
class A { 

    public: 

        virtual  int  f (int x); 

        virtual  int  g(int y); 

}; 

int A::f(int x) { … g(i) …;} 

int A::g(int y) { … f(j) …;} 

• How does body of f call the right g? 
– If g is redefined in derived class B, then inherited f 

must call B::g 

 



“This” pointer (self  in Smalltalk) 

• Code is compiled so that member function 
takes “object itself” as first argument 
   Code                int A::f(int x) { … g(i) …;} 

   compiled as    int A::f(A *this, int x) { … this->g(i) …;} 

 

• “this” pointer may be used in member 
function 
– Can be used to return pointer to object itself, pass 

pointer to object itself to another function, ... 
 



Non-virtual functions 

• How is code for non-virtual function found? 

• Same way as ordinary “non-member” functions: 

– Compiler generates function code and assigns address 

– Address of code is placed in symbol table 

– At call site, address is taken from symbol table and 
placed in compiled code 

• Overloading 

– Remember: overloading is resolved at compile time 

– This is different from run-time lookup of virtual function 

 



Virtual vs Overloaded Functions 

class parent { public: 

     void printclass() {printf("p ");}; 

     virtual void printvirtual() {printf("p ");};   }; 

class child : public parent { public: 

     void printclass() {printf("c ");}; 

     virtual void printvirtual() {printf("c ");};    }; 

main() { 

     parent p;  child c; parent *q; 

     p.printclass(); p.printvirtual(); c.printclass(); c.printvirtual(); 

     q = &p;  q->printclass(); q->printvirtual(); 

     q = &c;  q->printclass(); q->printvirtual(); 

} 

Output:  p  p  c  c  p  p  ?  ? 



Virtual vs Overloaded Functions 

class parent { public: 

     void printclass() {printf("p ");}; 

     virtual void printvirtual() {printf("p ");};   }; 

class child : public parent { public: 

     void printclass() {printf("c ");}; 

     virtual void printvirtual() {printf("c ");};    }; 

main() { 

     parent p;  child c; parent *q; 

     p.printclass(); p.printvirtual(); c.printclass(); c.printvirtual(); 

     q = &p;  q->printclass(); q->printvirtual(); 

     q = &c;  q->printclass(); q->printvirtual(); 

} 

Output:  p  p  c  c  p  p  p  c 



Multiple Inheritance 

Inherit independent functionality from independent classes 

Shape ReferenceCounted 

RefCounted 

Rectangle 

Rectangle 



Problem: Name Clashes 

class A {  
    public: 
        void virtual f() { … } 
}; 
class B {  
    public: 
        void virtual f() { … } 
}; 
class C : public A, public B { … }; 
… 
    C* p; 
    p->f();     // error  

 
 

 same name in 2 
base classes 



Possible solutions to name clash 

• Three general approaches 
– Implicit resolution 

• Language resolves name conflicts with arbitrary rule 

– Explicit resolution 
• Programmer must explicitly resolve name conflicts  

– Disallow name clashes 
•  Programs are not allowed to contain name clashes 

 

• No solution is always best 

• C++ uses explicit resolution 



Repair to previous example 

• Rewrite class C to call A::f explicitly 
 
class C : public A, public B { 
     public:  
          void virtual f( ) { 
                    A::f( );    // Call A::f(), not B::f(); 
          } 

 
• Reasonable solution 

– This eliminates ambiguity 
– Preserves dependence on A 

• Changes to A::f will change C::f  



vtable for Multiple Inheritance  

class A { 
    public: 
        int x; 
        virtual void f(); 
}; 
class B { 
   public: 
        int y; 
        virtual void g();  
        virtual void f();        
}; 
 

class C: public A, public B { 
    public: 
        int z; 
        virtual void f(); 
}; 
 
C *pc = new C; 
B *pb = pc; 
A *pa = pc; 
 

 Three pointers to same object, 
but different static types. 



Object and classes 

• Offset  in vtbl is used in call to pb->f, since C::f may refer to A 
data that is above the pointer pb 

• Call to pc->g can proceed through C-as-B vtbl 

C object 

C 

  A B 

vptr 

B data 

vptr 

A data 

C data 

 B object 

 A object 

& C::f 0 

C-as-A vtbl 

C-as-B vtbl 

& B::g 0 

& C::f  
 

 

 

 

 

 

 

 

pa, pc 

pb 

Xinyu
高亮



Multiple Inheritance “Diamond” 

• Is interface or implementation inherited twice? 
• What if definitions conflict? 

Window (D) 

Text Window (A) Graphics Window (B) 

Text, Graphics 

Window (C) 

 

  

 



Diamond inheritance in C++ 

• Standard base classes 
– D members appear twice in C 

• Virtual base classes 
   class A : public virtual D { … } 

– Avoid duplication of base class 
members 

– Require additional pointers so 
that D part of A, B parts of 
object can be shared 

C 

  A B 

  

D 

C++ multiple inheritance is complicated in  

because of desire to maintain efficient lookup 

A part 

D part 

C part 

B part 

 
 

Xinyu
高亮



Outline 

• Central concepts in object-oriented languages 
– Dynamic lookup, encapsulation, subtyping, inheritance 

• Objects as activation records 
– Simula – implementation as activation records with static scope 

• Pure dynamically-typed object-oriented languages 
– Object implementation and run-time lookup 

– Class-based languages (Smalltalk) 

– Prototype-based languages (Self, JavaScript) 

• Statically-typed object-oriented languages 
– C++ – using static typing to eliminate search 

           – problems with C++ multiple inheritance 

– Java – using Interfaces to avoid multiple inheritance 

 

 



Java language background 

• James Gosling and others at Sun, 1990 - 95 
• Oak language for “set-top box” 

– small networked device with television display 
• graphics 
• execution of simple programs 
• communication between local program and remote site 
• no “expert programmer” to deal with crash, etc. 

• Internet applications 
– simple language for writing programs that can be 

transmitted over network 
– not an integrated web scripting language like JavaScript 

 



Design Goals 

• Portability 
– Internet-wide distribution:  PC, Unix, Mac  

• Reliability 
– Avoid program crashes and error messages 

• Safety 
– Programmer may be malicious 

• Simplicity and familiarity 
– Appeal to average programmer; less complex than C++ 

• Efficiency  
– Important but secondary 



General design decisions  

• Simplicity 
– Almost everything is an object 
– All objects on heap, accessed through pointers 
– No functions, no multiple inheritance, no go to, no 

operator overloading, few automatic coercions  

• Portability and network transfer 
– Bytecode interpreter on many platforms 

• Reliability and Safety 
– Typed source and typed bytecode language 
– Run-time type and bounds checks 
– Garbage collection 



Language Terminology 

• Class, object  - as in other languages 

• Field – data member  

• Method - member function 

• Static members - class fields and methods 

• this - self 

• Package - set of classes in shared namespace 

• Native method - method compiled from in 
another language, often C 

 



Java Classes and Objects 

• Syntax similar to C++ 
• Object  

– has fields and methods 
– is allocated on heap, not run-time stack 
– accessible through reference (only ptr assignment) 
– garbage collected 

• Dynamic lookup 
– Similar in behavior to other languages 
– Static typing => more efficient than Smalltalk 
– Dynamic linking, interfaces => slower than C++ 



Point Class 

class Point { 
    private int x; 
    protected void setX (int y)  {x = y;} 
    public int  getX()     {return x;} 
    Point(int xval) {x = xval;}       // constructor 
}; 
 

 
 

– Visibility similar to C++, but not exactly (later slide) 
 



Object initialization 

• Java guarantees constructor call for each object 

– Memory allocated 

– Constructor called to initialize memory 

– Some interesting issues related to inheritance  

                                                      We’ll discuss later … 

• Cannot do this (would be bad C++ style anyway): 

– Obj* obj = (Obj*)malloc(sizeof(Obj)); 

• Static fields of class initialized at class load time 

– Talk about class loading later 



Garbage Collection and Finalize 

• Objects are garbage collected 
– No explicit free 
– Avoids dangling pointers and resulting type errors 

• Problem 
– What if object has opened file or holds lock? 

• Solution 
– finalize  method, called by the garbage collector  

• Before space is reclaimed, or when virtual machine exits 
• Space overflow is not really the right condition to trigger 

finalization when an object holds a lock...) 

– Important convention: call super.finalize 



Encapsulation and packages 

• Every field, method 
belongs to a class 

• Every class is part of 
some package 

– Can be unnamed 
default package 

– File declares which 
package code belongs 
to 

package 

class 

field 

method 

package 

class 

field 

method 



Visibility and access 

• Four visibility distinctions 
– public, private, protected, package 

• Method can refer to 
– private members of class it belongs to 

– non-private members of all classes in same package 

– protected members of superclasses (in diff package) 

– public members of classes in visible packages 
Visibility determined by files system, etc. (outside language) 

• Qualified names  (or use import) 

– java.lang.String.substring()    

package class method 



Inheritance 

• Similar to Smalltalk, C++ 

• Subclass inherits from superclass 

– Single inheritance only (but Java has interfaces) 

• Some additional features 

– Conventions regarding super  in constructor and 
finalize  methods 

– Final classes and methods 



Example subclass 

class ColorPoint extends Point { 

   // Additional fields and methods 

    private Color c; 

    protected void setC (Color d)  {c = d;} 

    public Color  getC()     {return c;} 

   // Define constructor 

    ColorPoint(int xval, Color cval) { 

         super(xval);    // call Point constructor 

         c = cval;  }     // initialize ColorPoint field 

 }; 

Xinyu
高亮



Class Object 

• Every class extends another class 

– Superclass is Object if no other class named 

• Methods of class Object 
– GetClass – return the Class object representing class of the object  

– ToString – returns string representation of object 

– equals – default object equality (not ptr equality) 

– hashCode  

– Clone – makes a duplicate of an object 

– wait, notify, notifyAll – used with concurrency 

– finalize 

 



Constructors and Super 

• Java guarantees constructor call for each object 
• This must be preserved by inheritance 

– Subclass constructor must call super constructor 
• If first statement is not call to super, then call super()  

inserted automatically by compiler 
• If superclass does not have a constructor with no args,  then 

this causes compiler error (yuck)  
• Exception to rule: if one constructor invokes another, then it 

is responsibility of second constructor to call super, e.g., 
 ColorPoint() { ColorPoint(0,blue);} 

   is compiled without inserting call to super  

• Different conventions for finalize and super 
•  Compiler does not force call to super finalize 



Final classes and methods 

• Restrict inheritance 
– Final classes and methods cannot be redefined 

• Example 
   java.lang.String 

• Reasons for this feature 
– Important for security 

• Programmer controls  behavior of all subclasses 

• Critical because subclasses produce subtypes 

– Compare to C++ virtual/non-virtual 
• Method is “virtual” until it becomes final 

 

Xinyu
高亮



Java Interfaces     (by example) 

interface Shape { 
 public float center(); 
   public void rotate(float degrees); 
} 
interface Drawable { 
 public void setColor(Color c); 
   public void draw(); 
} 
class Circle implements Shape, Drawable { 
 // does not inherit any implementation 
   // but must define Shape, Drawable methods  
} 



Interfaces vs Multiple Inheritance 

• C++ multiple inheritance 
– A single class may inherit from two base classes 
– Constraints of C++ require derived class 

representation to resemble all  base classes  

• Java interfaces 
– A single class may implement two interfaces 
– No inheritance (of implementation) involved 
– Java implementation (discussed later) does not 

require similarity between class representations 
• For now, think of Java implementation as 

Smalltalk/JavaScript implementation, although we will see 
that the Java type system supports some optimizations 



Outline 

• Central concepts in object-oriented languages 
– Dynamic lookup, encapsulation, subtyping, inheritance 

• Objects as activation records 
– Simula – implementation as activation records with static scope 

• Pure dynamically-typed object-oriented languages 
– Object implementation and run-time lookup 

– Class-based languages (Smalltalk) 

– Prototype-based languages (Self, JavaScript) 

• Statically-typed object-oriented languages 
– C++ – using static typing to eliminate search 

           – problems with C++ multiple inheritance 

– Java – using Interfaces to avoid multiple inheritance 

 




