
Objects, Encapsulation,
Inheritance

CS 242 2012

Reading (two lectures)

 Chapter 10, except section 10.4

 Chapter 11, sections 11.1, 11.2, 11.3.1 and 11.4., 11.5, 11.6 only

 Chapter 12, sections 12.1, 12.2, 12.3 and 12.5 only

 Chapter 13, sections 13.1 and 13.2 only

Warning

• The lecture organization doesn't exactly match
the book organization

– The book covers selected object-oriented
languages in historical order

– Lectures are organized more by concept instead of
by language

Outline

• Central concepts in object-oriented languages
– Dynamic lookup, encapsulation, subtyping, inheritance

• Objects as activation records
– Simula: implementation as activation records with static scope

• Pure dynamically-typed object-oriented languages
– Object implementation and run-time lookup

– Class-based languages (Smalltalk)

– Prototype-based languages (Self, JavaScript)

• Statically-typed object-oriented languages (second lecture)
– C++ – using static typing to eliminate search

 – problems with C++ multiple inheritance

– Java – using Interfaces to avoid multiple inheritance

Object-oriented programming

• Primary object-oriented language concepts
– dynamic lookup

– encapsulation

– inheritance

– subtyping

• Program organization
– Work queue, geometry program, design patterns

• Comparison
– Objects as closures?

Objects

• An object consists of
– hidden data

instance variables, also called
fields, data members, …

hidden functions also possible

– public operations
methods or member functions
can also have public variables

in some languages

• Object-oriented program:
– Send messages to objects

hidden data

method1 msg1

.

methodn msgn

What’s interesting about this?

• Universal encapsulation construct
– Data structure

– File system

– Database

– Window

– Integer

• Metaphor usefully ambiguous
– sequential or concurrent computation

– distributed, sync. or async. communication

Object-Orientation

• Programming methodology

– organize concepts into objects and classes

– build extensible systems

• Language concepts

– dynamic lookup

– encapsulation

– subtyping allows extensions of concepts

– inheritance allows reuse of implementation

Dynamic Lookup

• In object-oriented programming,
 object  message (arguments)

 code depends on object and message

• In conventional programming,
 operation (operands)

 meaning of operation is always the same

Fundamental difference between abstract data types (alone) and objects

Example

• Add two numbers x  add (y)

 different add if x is integer, string

• Conventional programming add (x, y)

 function add has fixed meaning

 Important distinction:
 Overloading is resolved at compile time
 Dynamic lookup is a run time operation

Language concepts

• “dynamic lookup”

– different code for different objects

– integer “+” different from string “+”

• encapsulation

• subtyping

• inheritance

Encapsulation

• Builder of a concept has detailed view

• User of a concept has “abstract” view

• Encapsulation separates these two views

– Implementation code: operate on representation

– Client code: operate by applying fixed set of
operations provided by implementer of
abstraction

 message Object

Language concepts

• “Dynamic lookup”
– different code for different object

– integer “+” different from real “+”

• Encapsulation
– Implementer of a concept has detailed view

– User has “abstract” view

– Encapsulation separates these two views

• Subtyping

• Inheritance

Subtyping and Inheritance

• Interface

– The external view of an object

• Subtyping

– Relation between interfaces

• Implementation

– The internal representation of an object

• Inheritance

– Relation between implementations

Object Interfaces

• Interface

– The messages understood by an object

• Example: point

– x-coord : returns x-coordinate of a point

– y-coord : returns y-coordinate of a point

– move : method for changing location

• The interface of an object is its type

Subtyping

• If interface A contains all of interface B,
then A objects can also be used B objects.

Colored_point interface contains Point
Colored_point is a subtype of Point

Point
 x-coord

 y-coord

 move

Colored_point
 x-coord
 y-coord
 color
 move
 change_color

Inheritance

• Implementation mechanism

• New objects may be defined by reusing
implementations of other objects

Example

class Point
private

 float x, y

public

 point move (float dx, float dy);

class Colored_point
private

 float x, y; color c

public

 point move(float dx, float dy);

 point change_color(color newc);

• Subtyping
– Colored points can be

used in place of points
– Property used by client

program

• Inheritance
– Colored points can be

implemented by reusing
point implementation

– Technique used by
implementer of classes

OO Program Structure

• Group data and functions

• Class
– Defines behavior of all objects that are instances

of the class

• Subtyping
– Place similar data in related classes

• Inheritance
– Avoid reimplementing functions that are already

defined

Example: Geometry Library

• Define general concept: shape

• Implement two shapes: circle, rectangle

• Functions on implemented shapes

 center, move, rotate, print

• Anticipate additions to library

Shapes

• Interface of every shape must include

 center, move, rotate, print

• Different kinds of shapes are implemented
differently

– Square: four points, representing corners

– Circle: center point and radius

Subtype hierarchy

Shape

Circle Rectangle

• General interface defined in the shape class
• Implementations defined in circle, rectangle
• Extend hierarchy with additional shapes

Code placed in classes

• Dynamic lookup
 circle  move(x,y) calls function c_move

• Conventional organization
 Place c_move, r_move in move function

center move rotate print

Circle c_center c_move c_rotate c_print

Rectangle r_center r_move r_rotate r_print

Example use: Processing Loop

Remove shape from work queue

Perform action

• Control loop does not know the

type of each shape

Outline

• Central concepts in object-oriented languages
– Dynamic lookup, encapsulation, subtyping, inheritance

• Objects as activation records
– Simula – implementation as activation records with static scope

• Pure dynamically-typed object-oriented languages
– Object implementation and run-time lookup

– Class-based languages (Smalltalk)

– Prototype-based languages (Self, JavaScript)

• Statically-typed object-oriented languages
– C++ – using static typing to eliminate search

 – problems with C++ multiple inheritance

– Java – using Interfaces to avoid multiple inheritance

Simula: objects as activation records

• Simula 67: First object-oriented language

• Designed for simulation
– Later recognized as general-purpose prog language

• Extension of Algol 60

• Standardized as Simula (no “67”) in 1977

• Inspiration to many later designers
– Smalltalk

– C++

– ...

Brief history

• Norwegian Computing Center
– Designers: Dahl, Myhrhaug, Nygaard
– Simula-1 in 1966 (strictly a simulation language)
– General language ideas

• Influenced by Hoare’s ideas on data types
• Added classes and prefixing (subtyping) to Algol 60

– Nygaard
• Operations Research specialist and political activist
• Wanted language to describe social and industrial systems
• Allow “ordinary people” to understand political (?) changes

– Dahl and Myhrhaug
• Maintained concern for general programming

Objects in Simula

• Class
– A procedure that returns a pointer to its activation

record

• Object
– Activation record produced by call to a class

• Object access
– Access any local variable or procedures using dot

notation: object.var

• Memory management
– Objects are garbage collected

• user destructors considered undesirable

Example: Circles and lines

• Problem
– Find the center and radius of the circle

passing through three distinct points, p, q,
and r

• Solution
– Draw intersecting circles Cp, Cq around p,q

and circles Cq’, Cr around q, r (Picture
assumes Cq = Cq’)

– Draw lines through circle intersections

– The intersection of the lines is the center
of the desired circle.

– Error if the points are colinear.

r

q

p

Approach in Simula

• Methodology
– Represent points, lines, and circles as objects.
– Equip objects with necessary operations.

• Operations
– Point

equality(anotherPoint) : boolean
distance(anotherPoint) : real (needed to construct circles)

– Line
parallelto(anotherLine) : boolean (to see if lines intersect)
meets(anotherLine) : REF(Point)

– Circle
intersects(anotherCircle) : REF(Line)

Simula Point Class

class Point(x,y); real x,y;

 begin

 boolean procedure equals(p); ref(Point) p;

 if p =/= none then

 equals := abs(x - p.x) + abs(y - p.y) < 0.00001

 real procedure distance(p); ref(Point) p;

 if p == none then error else

 distance := sqrt((x - p.x)**2 + (y - p.y) ** 2);

end ***Point***

p :- new Point(1.0, 2.5);

q :- new Point(2.0,3.5);

if p.distance(q) > 2 then ...

formal p is pointer to Point

uninitialized ptr has
value none

pointer assignment

Representation of objects

 Object is represented by activation record with access link to

find global variables according to static scoping

p access link

real x 1.0

real y 2.5

proc equals

proc distance

code for

equals

code for

distance

Simula line class

class Line(a,b,c); real a,b,c;
 begin
 boolean procedure parallelto(l); ref(Line) l;
 if l =/= none then parallelto := ...
 ref(Point) procedure meets(l); ref(Line) l;
 begin real t;
 if l =/= none and ~parallelto(l) then ...
 end;
 real d; d := sqrt(a**2 + b**2);
 if d = 0.0 then error else
 begin
 d := 1/d;
 a := a*d; b := b*d; c := c*d;
 end;
 end *** Line***

Procedures

Initialization:
“normalize” a,b,c

Local variables

line determined by
ax+by+c=0

Derived classes in Simula

• A class decl may be prefixed by a class name

 class A

A class B

A class C

B class D

• An object of a “prefixed class” is the
concatenation of objects of each class in prefix

d :- new D(…)

A

B C

D

A part
B part
D part d

Main object-oriented features

• Classes
• Objects
• Inheritance (“class prefixing”)
• Subtyping
• Virtual methods

– A function can be redefined in subclass

• Inner
– Combines code of superclass with code of subclass

• Inspect/Qua
– run-time class/type tests

Features absent from Simula 67

• Encapsulation
– All data and functions accessible; no private, protected

• Self/Super mechanism of Smalltalk
– But has an expression thisclass to refer to object

itself, regarded as object of type class. Not clear how
powerful this is…

• Class variables
– But can have global variables

• Exceptions
– Not fundamentally an OO feature ...

Simula Summary

• Class
– ”procedure" that returns ptr to activation record

– initialization code always run as procedure body

• Objects: closure created by a class

• Encapsulation
– protected and private not recognized in 1967

– added later and used as basis for C++

• Subtyping: determined by class hierarchy

• Inheritance: provided by class prefixing

Outline

• Central concepts in object-oriented languages
– Dynamic lookup, encapsulation, subtyping, inheritance

• Objects as activation records
– Simula – implementation as activation records with static scope

• Pure dynamically-typed object-oriented languages
– Object implementation and run-time lookup

– Class-based languages (Smalltalk)

– Prototype-based languages (Self, JavaScript)

• Statically-typed object-oriented languages
– C++ – using static typing to eliminate search

 – problems with C++ multiple inheritance

– Java – using Interfaces to avoid multiple inheritance

Smalltalk

• Major language that popularized objects
• Developed at Xerox PARC

– Smalltalk-76, Smalltalk-80 were important versions

• Object metaphor extended and refined
– Used some ideas from Simula, but very different lang
– Everything is an object, even a class
– All operations are “messages to objects”
– Very flexible and powerful language

• Similar to “everything is a list” in Lisp, but more so
• Example: object can detect that it has received a message it

does not understand, can try to figure out how to respond.

Motivating application: Dynabook

• Concept developed by Alan Kay
• Small portable computer

– Revolutionary idea in early 1970’s
• At the time, a minicomputer was shared by 10 people,

stored in a machine room.

– What would you compute on an airplane?

• Influence on Smalltalk
– Language intended to be programming language and

operating system interface
– Intended for “non-programmer”
– Syntax presented by language-specific editor

Smalltalk language terminology

• Object Instance of some class

• Class Defines behavior of its objects

• Selector Name of a message

• Message Selector together with parameter values

• Method Code used by a class to respond to message

• Instance variable Data stored in object

• Subclass Class defined by giving incremental

 modifications to some superclass

Example: Point class

• Class definition written in tabular form

 class var pi

 super class Object

 class name Point

 instance var x y

 class messages and methods

…names and code for methods...

 instance messages and methods

…names and code for methods...

Class messages and methods

Three class methods
 newX:xvalue Y:yvalue | |
 ^ self new x: xvalue
 y: yvalue

 newOrigin | |
 ^ self new x: 0
 y: 0

 initialize | |
 pi <- 3.14159

• Explanation
- selector is mix-fix newX:Y:
 e.g, Point newX:3 Y:2
- symbol ^ marks return value
- new is method in all classes,
 inherited from Object
- | | marks scope for local decl

- initialize method sets pi, called
automatically
- <- is syntax for assignment

Instance messages and methods

Five instance methods
 x: xcoord y: ycoord | |
 x <- xcoord
 y <- ycoord
 moveDx: dx Dy: dy | |
 x <- dx + x
 y <- dy + y
 x | | ^x
 y | | ^y
 draw | |
 ...code to draw point...

• Explanation
set x,y coordinates,

 e.g, pt x:5 y:3

move point by given amount

return hidden inst var x

return hidden inst var y

draw point on screen

Run-time representation of point

class

x 3

y 2

x

y

newX:Y:

...

move

Point object

Point class

Template

Method dictionary

to superclass Object

code

...

code

Detail: class method shown in
dictionary, but lookup procedure
distinguishes class and instance
methods

Inheritance

• Define colored points from points

 class var

 super class Point

 class name ColorPoint

 instance var color

 class messages and methods

 instance messages and methods

 newX:xv Y:yv C:cv  … code … 

 draw  … code … 

 color | | ^color

new instance
variable

new method

override Point
method

Run-time representation

2

3

x

y newX:Y:

draw

move

Point object Point class Template

Method dictionary

...

4

5

x

y newX:Y:C:

color

draw

ColorPoint object
ColorPoint class Template

Method dictionary

red

color

This is a schematic diagram meant to illustrate the main idea. Actual implementations may differ.

Encapsulation in Smalltalk

• Methods are public

• Instance variables are hidden
– Not visible to other objects

• pt x is not allowed unless x is a method

– But may be manipulated by subclass methods
• This limits ability to establish invariants

• Example:
– Superclass maintains sorted list of messages with some

selector, say insert

– Subclass may access this list directly, rearrange order

Smalltalk Summary

• Class
– creates objects that share methods

– pointers to template, dictionary, parent class

• Objects: created by a class, contains instance variables

• Encapsulation
– methods public, instance variables hidden

• Subtyping: implicit, no static type system

• Inheritance: subclasses, self, super

Single inheritance in Smalltalk-76, Smalltalk-80

Self programming language

• Prototype-based pure object-oriented language.

• Designed by Randall Smith (Xerox PARC) and David
Ungar (Stanford University)

– Successor to Smalltalk-80

– “Self: The power of simplicity” appeared at OOPSLA ‘87

– Initial implementation done at Stanford; then project
shifted to Sun Microsystems Labs

– Vehicle for implementation research

• Self 4.3 available from Oracle web site:
http://labs.oracle.com/self/

• Conceptual economy

– Everything is an object

– Everything done using messages

– No classes

– No variables

• Concreteness

– Objects should seem “real”

– GUI to manipulate objects directly

Design Goals

“A Language for Smalltalk runtime structures”

2

3

x

y newX:Y:

draw

move

Point object Point class Template

Method dictionary

...

4

5

x

y newX:Y:C:

color

draw

ColorPoint object ColorPoint class Template

Method dictionary

red

color

How successful?

• Self is a carefully designed language

• Few users: not a popular success
– No compelling application, until JavaScript

– Influenced development of object calculi w/o
classes

• However, many research innovations
– Very simple computational model

– Enormous advances in compilation techniques

– Influenced the design of Java compilers

Language Overview

• Dynamically typed

• Everything is an object

• All computation via message passing

• Creation and initialization: clone object

• Operations on objects:
– send messages

– add new slots

– replace old slots

– remove slots

Objects and Slots

Object consists of named slots.
– Data

• Such slots return contents upon evaluation; so act like
instance variables

– Assignment
• Set the value of associated slot

– Method
• Slot contains Self code

– Parent
• Point to existing object to inherit slots

Messages and Methods

• When message is sent, object
searched for slot with name.

• If none found, all parents are
searched.
– Runtime error if more than one

parent has a slot with the same
name.

• If slot is found, its contents
evaluated and returned.
– Runtime error if no slot found.

parent*

x 3

x: 

parent*

print …

clone …

Messages and Methods

parent*

x 3

x: 

parent*

print …

clone …
obj x 3

obj print print point object

obj x: 4 obj after setting x to 4

Mixing State and Behavior

parent* …

+ add points

x 4

y 17

x: 

parent*

y: 

x

Random

number

generator

y o

parent*

y: 

Object Creation

• To create an object, we copy an old one

• We can add new methods, override
existing ones, or even remove methods

• These operations also apply to parent
slots

Changing Parent Pointers

parent*: 

name Charles

name: 

jump …

eatFly …

parent*

dance …

eatCake …

p jump.

p eatFly.

p parent: prince.

p dance.

p

prince frog

Changing Parent Pointers

parent*: 

name Charles

name: 

jump …

eatFly …

parent*

dance …

eatCake …

p jump.

p eatFly.

p parent: prince.

p dance

p

prince frog

p jump.

p eatFly.

p parent: prince.

p dance.

Disadvantages of classes?

• Classes require programmers to understand a
more complex model.
– To make a new kind of object, we have to create a

new class first.

– To change an object, we have to change the class.

– Infinite meta-class regression.

• But: Does Self require programmer to reinvent
structure?
– Common to structure Self programs with traits:

objects that simply collect behavior for sharing.

Recall JavaScript Prototypes

• Every JavaScript object has a prototype

– Object literals linked to Object.prototype

– Otherwise, prototype based on constructor

 function Foo() {
 this.x = 1;
}
obj = new Foo;

• Changing the JavaScript prototype

– The prototype property is immutable

– Changes to prototype property inherited immediately

Outline

• Central concepts in object-oriented languages
– Dynamic lookup, encapsulation, subtyping, inheritance

• Objects as activation records
– Simula – implementation as activation records with static scope

• Pure dynamically-typed object-oriented languages
– Object implementation and run-time lookup

– Class-based languages (Smalltalk)

– Prototype-based languages (Self, JavaScript)

• Statically-typed object-oriented languages (next lecture)
– C++ – using static typing to eliminate search

 – problems with C++ multiple inheritance

– Java – using Interfaces to avoid multiple inheritance

