
Computable Functions

CS 242 2012

Reading: Chapter 2

Foundations: Partial,Total Functions

• Value of an expression may be undefined
– Undefined operation, e.g., division by zero

• 3/0 has no value

• implementation may halt with error condition

– Nontermination
• f(x) = if x=0 then 1 else f(x-2)

• this is a partial function: not defined on all arguments

• cannot be detected at compile-time; this is halting problem

– These two cases are
• “Mathematically” equivalent

• Operationally different

Partial and Total Functions

– Total function: f(x) has a value for every x

– Partial function: g(x) does not have a value for every x

x

g(x)

f(x)

Functions and Graphs

– Graph of f = { x,y | y = f(x) }

– Graph of g = { x,y | y = g(x) }

Mathematics: a function is a set of ordered pairs (graph of function)

x

g(x)

f(x)

Partial and Total Functions

• Total function f:AB is a subset f  AB with
– For every xA, there is some yB with x,y  f (total)

– If x,y  f and x,z  f then y=z (single-valued)

• Partial function f:AB is a subset f  AB with
– If x,y  f and x,z  f then y=z (single-valued)

• Programs define partial functions for two reasons
– partial operations (like division)

– nontermination

 f(x) = if x=0 then 1 else f(x-2)

Computability

• Definition
Function f is computable if some program P computes it:

For any input x, the computation P(x) halts with output f(x)

• Terminology
Partial recursive functions
= partial functions (int to int) that are computable

• Church-Turing Hypothesis
The programming language doesn’t matter –
all “reasonable” programming languages
define the same class of computable functions

Halting function

• Decide whether program halts on input
– Given program P and input x to P,

 Halt (P,x) =

Theorem: There is no program for Halt

yes if P(x) halts

no otherwise

Clarifications
• Assume program P requires one string input x

• Write P(x) for output of P when run in input x

• Program P is string input to Halt

• Represent two inputs P, x as string P$x (for example)

Unsolvability of the halting problem

• Suppose P solves variant of halting problem
 On input Q, assume
 P(Q) =

• Build program D

 D(Q) =

• Does this make sense? What can D(D) do?

– If D(D) halts, then D(D) runs forever.
– If D(D) runs forever, then D(D) halts.
– CONTRADICTION: program P must not exist.

yes if Q(Q) halts

no otherwise

run forever if Q(Q) halts

halt if Q(Q) runs forever

Examples

• Is there an algorithm to decide whether this
program has a run-time type error?

 if f(x) then y=1+”Bob” else y=2+”Alice”

• Is there an algorithm to decide whether this
program reads variable z ?

 if f(x) then y=z+”Bob” else y=z+”Alice”

Main points about computability

• Some functions are computable, some are not

– Halting problem

– Other problems that are equivalent

• Programming language implementation

– Can report error if program result is undefined due to
division by zero, other error condition

– Cannot warn user if program will not terminate

– Many useful program properties are not computable

Data Abstraction and Modularity

CS 242 2012

Reading: Sections 9.1, 9.2 (except 9.2.5), and 9.3.1

Topics

• Modularity
– Interface, specification, and implementation

• Modular program development
– Step-wise refinement ; Prototyping ; …

• Language support for modularity
– Procedural abstraction
– Abstract data types

• Representation independence
• Datatype induction

– Packages and modules
– Generic abstractions

• Functions and modules with type parameters

Modularity: Basic Concepts

• Component
– Meaningful program unit

• Function, data structure, module, …

• Interface
– Types and operations defined within a component

that are visible outside the component

• Specification
– Intended behavior of component, expressed as

property observable through interface

• Implementation
– Data structures and functions inside component

Example: Function Component

• Component
– Function to compute square root

• Interface
– float sqroot (float x)

• Specification
– If x>0, then sqrt(x)*sqrt(x)  x.

• Implementation
float sqroot (float x){
 float y = x/2; float step=x/4; int i;
 for (i=0; i<20; i++){if ((y*y)<x) y=y+step; else y=y-step; step = step/2;}
 return y;
}

Example: Data Type

• Component
– Priority queue: data structure that returns elements in

order of decreasing priority

• Interface
– Type pq
– Operations empty : pq
 insert : elt * pq  pq
 deletemax : pq  elt * pq

• Specification
– Insert add to set of stored elements
– Deletemax returns max elt and pq of remaining elts

Philosophy

• Build reusable program components

• Construct systems by divide-and-conquer

– Limit interactions between components

– Each component is assumed to satisfy spec

• If another component satisfies the same specification,
you can replace the first by the second

• Internal improvements only improve the overall system,
not break it

Example program using component

• Priority queue: structure with three operations
empty : pq
insert : elt * pq  pq
deletemax : pq  elt * pq

• Sorting algorithm using priority queue
begin
 create empty pq s
 insert each element from array into s
 remove elements in decreasing order and place in array
end

 This gives us an O(n log n) sorting algorithm (HW ?)

Component Dependencies

source: Lattix.com

Modular program design

• Top-down design

– Begin with main tasks, successively refine

• Bottom-up design

– Implement basic concepts, then combine

• Prototyping

– Build coarse approximation of entire system

– Successively add functionality

Stepwise Refinement

• Wirth, 1971
– “… program ... gradually developed in a sequence of

refinement steps”
– In each step, instructions … are decomposed into

more detailed instructions.

• Historical reading on web (CS242 Reading page)
– N. Wirth, Program development by stepwise

refinement, Communications of the ACM, 1971
– D. Parnas, On the criteria to be used in decomposing

systems into modules, Comm ACM, 1972
– Both ACM Classics of the Month

Dijkstra’s Example (1969)

begin

 print first 1000 primes

end begin

 variable table p

 fill table p with first 1000
 primes

 print table p

end

begin

 int array p[1:1000]

 make for k from 1 to 1000

 p[k] equal to k-th prime

 print p[k] for k from 1 to 1000

end

Program Structure

Main Program

Sub-program Sub-program Sub-program

Sub-program Sub-program

Data Refinement

• Wirth, 1971 again:

– As tasks are refined, so the data may have to be
refined, decomposed, or structured, and it is
natural to refine program and data specifications
in parallel

Example

• For level 2, represent account
balance by integer variable

• For level 3, need to maintain list
of past transactions

Bank Transactions

Deposit Withdraw Print Statement

Print transaction

history

Language support for modularity

• Interface definition

– Interface may consist of types, functions, subtype
relationships, other language concepts exposed to
other modules

• Isolation

– Restrict dependence to factors visible through
explicitly defined interface

Examples

• Procedural abstraction
– Hide functionality in procedure or function

• Data abstraction
– Hide decision about representation of data

structure and implementation of operations

– Example: priority queue can be binary search tree
or partially-sorted array

Abstract Data Types

• Prominent language development of 1970’s

• Main ideas:

– Separate interface from implementation

• Example:
– Sets have empty, insert, union, is_member?, …

– Sets implemented as … linked list …

– Use type checking to enforce separation

• Client program only has access to operations in interface

• Implementation encapsulated inside ADT construct

ML Abstype

• Declare new type with values and operations
abstype t = <tag> of <type>

 with
 val <pattern> = <body>
 ...
 fun f(<pattern>) = <body>
 ...
 end

• Representation

t = <tag> of <type> similar to ML datatype decl

Abstype for Complex Numbers

• Input
abstype cmplx = C of real * real with

 fun cmplx(x,y: real) = C(x,y)

 fun x_coord(C(x,y)) = x

 fun y_coord(C(x,y)) = y

 fun add(C(x1,y1), C(x2,y2)) = C(x1+x2, y1+y2)

end

• Types (compiler output)
type cmplx

val cmplx = fn : real * real -> cmplx

val x_coord = fn : cmplx -> real

val y_coord = fn : cmplx -> real

val add = fn : cmplx * cmplx -> cmplx

Abstype for finite sets

• Declaration
abstype 'a set = SET of 'a list with

 val empty = SET(nil)

 fun insert(x, SET(elts)) = ...

 fun union(SET(elts1), Set(elts2)) = ...

 fun isMember(x, SET(elts)) = ...

end

• Types (compiler output)
type 'a set

val empty = - : 'a set

val insert = fn : 'a * ('a set) -> ('a set)

val union = fn : ('a set) * ('a set) -> ('a set)

val isMember = fn : 'a * ('a set) -> bool

Origin of Abstract Data Types

• Structured programming, data refinement
– Write program assuming some desired operations
– Later implement those operations
– Example:

• Write expression parser assuming a symbol table
• Later implement symbol table data structure

• Research on extensible languages
– What are essential properties of built-in types?
– Try to provide equivalent user-defined types
– Example:

• ML sufficient to define list type that is same as built-in lists

Comparison with built-in types

• Example: int

– Can declare variables of this type x: int

– Specific set of built-in operations +, -, *, …

– No other operations can be applied to integer values

• Similar properties desired for abstract types

– Can declare variables x : abstract_type

– Define a set of operations (give interface)

– Language guarantees that only these operations can
be applied to values of abstract_type

Modules

• General construct for information hiding

• Two parts
– Interface:

A set of names and their types

– Implementation:
Declaration for every entry in the interface

Additional declarations that are hidden

• Examples:
– Modula modules, Ada packages, ML structures, ...

Modules and Data Abstraction

module Set
 interface
 type set
 val empty : set
 fun insert : elt * set -> set
 fun union : set * set -> set
 fun isMember : elt * set -> bool
 implementation
 type set = elt list
 val empty = nil
 fun insert(x, elts) = ...
 fun union(…) = ...
 ...
end Set

Can define ADT
Private type

Public operations

More general
Several related types and
operations

Some languages provide
Separate interface and
implementation

One interface can have multiple
implementations

Haskell modules

• Hide and selectively export declarations

 module Tree (Tree(Leaf,Branch), fringe) where

 data Tree a = Leaf a | Branch (Tree a) (Tree a)
 fringe :: Tree a -> [a]
 fringe (Leaf x) = [x]
 fringe (Branch left right) = fringe left ++ fringe right

Export list

Declar-

ations

Basic description: http://www.haskell.org/tutorial/modules.html

More information: http://www.haskell.org/onlinereport/modules.html

Generic Abstractions

• Parameterize modules by types, other modules

• Create general implementations
– Can be instantiated in many ways

• Language examples:
– Ada generic packages, C++ templates, ML functors,

…

– ML geometry modules in supplementary readings

– C++ Standard Template Library (STL) provides
extensive examples

Summary

• Modularity
– Interface, specification, and implementation

• Modular program development
– Step-wise refinement ; Prototyping ; …

• Language support for modularity
– Procedural abstraction
– Abstract data types

• Representation independence
• Datatype induction

– Packages and modules
– Generic abstractions

• Functions and modules with type parameters

• Modularity is supported by object-oriented languages,
but did not originate with OOP

