CS 242 2012

Control in Sequential Languages

Reading:
Chapter 8, Sections 8.1 — 8.3 (only)

Section 7.3 of The Haskell 98 Report, Exception Handling in the 1/O Monad,
http://www.haskell.org/onlinelibrary/io-13.html (short)

Chapter 3, Sections 3.3, 3.4.2, 3.4.3, 3.4.5, 3.4.8 (only)

Topics

Structured Programming

— Go to considered harmful

Exceptions

— “structured” jumps that may return a value
— dynamic scoping of exception handler
Continuations

— Function representing the rest of the program
— Generalized form of tail recursion

Heap memory management

— What is garbage?

— Standard ways of managing heap memory

Fortran Control Structure

10 IF (X .GT. 0.000001) GO TO 20
11 X=-X
IF (X .LT. 0.000001) GO TO 50
20 IF (X*Y .LT. 0.00001) GO TO 30
X =X-Y-Y
30 X'=X+Y

50 CONTINUE
X=A
Y = B-A
GOTO 11

Similar structure may occur in assembly code

Historical Debate

Dijkstra, Go To Statement Considered Harmful

— Letter to Editor, C ACM, March 1968

— Link on CS242 web site

Knuth, Structured Prog. with go to Statements
— You can use goto, but please do so in structured way

Continued discussion
— Welch, “GOTO (Considered Harmful)", n is Odd”
General questions

— Do syntactic rules force good programming style?
— Can they help?

Advance in Computer Science

e Standard constructs that structure jumps
if ... then ... else ... end
while ... do ... end

for..{..}
case ...

* Modern style
— Group code in logical blocks

— Avoid explicit jumps except for function return
— Cannot jump into middle of block or function body

Exceptions: Structured Exit

* Terminate part of computation
— Jump out of construct
— Pass data as part of jump
— Return to most recent site set up to handle exception
— Unnecessary activation records may be deallocated

* May need to free heap space, other resources

 Two main language constructs
— Establish exception handler to catch exception
— Statement or expression to raise or throw exception

Often used for unusual or exceptional condition; other uses too

JavaScript Exceptions

throw e //jump to catch, passing exception object

try { ...

} catch (e if e ==
} catch (e if e ==
} catch (e if e ==

} catch (e){ ...
}Hfinally { ...

)

//code to try

...) { ... //catch if first condition true
...) { ... //catch if second condition true
...) { ... //catch if third condition true

// catch any exception
//code to execute after everything else

http://developer.mozilla.org/En/Core_JavaScript_1.5_Guide/

Exception_Handling_Statements

JavaScript Example

function invert(matrix) {
if ... throw “Determinant”;

5

try { ... invert(myMatrix); ...
}
catch (e) { ...

// recover from error

}

C++ Example

Matrix invert(Matrix m) {
if ... throw Determinant;

5

try { ... invert(myMatrix); ...
}

catch (Determinant) { ...
// recover from error

}

Where is an exception caught?

* Dynamic scoping of handlers
— Throw to most recent catch on run-time stack

— Recall: stacks and activation records

e Which activation record link is used?

— Access link? Control link?

 Dynamic scoping is not an accident
— User knows how to handler error
— Author of library function does not

M L EXCG ptIO NS (cover briefly so book is useful to you)

* Declaration
exception {(name) of (type)
gives name of exception and type of data passed when raised
* Raise
raise (name) (parameters)
expression form to raise and exception and pass data
 Handler
(expl) handle (pattern) => (exp2)
evaluate first expression
if exception that matches pattern is raised,

then evaluate second expression instead
General form allows multiple patterns.

Exception for Error Condition

- datatype ‘a tree = LF of ‘a | ND of (‘a tree)*(‘a tree)
- exception No_Subtree;
- fun Isub (LF x) = raise No_Subtree
| Isub (ND(x,y)) = x;
>val Isub =fn : ‘a tree -> ‘a tree

— This function raises an exception when there is no
reasonable value to return

— We’ll look at typing later.

Exception for Efficiency

* Function to multiply values of tree leaves
fun prod(LF x) = x
| prod(ND(x,y)) = prod(x) * prod(y);
* Optimize using exception
fun prod(tree) =
let exception Zero
fun p(LF x) = if x=0 then (raise Zero) else x
| p(ND(x,y)) = p(x) * p(y)
in
p(tree) handle Zero=>0
end;

JavasScript version

Dynamic Scope of Handler

try{
function f(y) { throw “exn”};

function g(h){ try {h(1)} catch(e){return 2} };

try {
g(f)
} catch(e){4};
} catch(e){6};
H_/

handler

scope

Which catch catches the throw?

Book version (ML)

Dynamic Scope of Handler

exception X;
(let fun f(y) = raise X

and g(h) = h(1) handle X => 2
, — ——
1 in NG _
g(f) handle X =>4

end) handle X => 6;
y handler

scope

Which handler is used?

JavasScript version

Dynamic Scope of Handler

try{ catch(e) 6

function f(y) { throw “exn”};

function g(h){ try {h(1)} access link — |
catch(e){return 2} fun f .

Z access link —
try{ fun g _—
g(f) _

} catch(e){4}; access link —
} catch(e){6}; catch(e) 4

g(f) |access link —

Dynamic scope: formal h =
find first handler, catch(e) 2

going up the f(1) |access link —

dynamic call chain formal y 1

Book version (ML)

Dynamic Scope of Handler

exception X;
(let fun f(y) = raise X
and g(h) = h(1) handle X => 2
in
g(f) handle X =>4
end) handle X => 6;

Dynamic scope:
find first X handler,
going up the
dynamic call chain
leading to raise X.

g(f)

f(1)

handler X 6 j
access link =
fun f —
access link —
fun g —
access link —
handler X 4
access link —
formal h S
handler X 2
access link ——
formal y 1

JavasScript version

Compare to static scope of variables

declaration
try{ m\
function f(y) { throw “exn”}; function f(y) { return x};

function g(h){ try {h(1)}
catch(e){return 2}

function g(h){ var x=2;
return h(1)

%)’
try { L
o(f) (function (y) {
} catch(e){4}; var x=4;
} catch(e){6}; 8(f)
— / 1)(0);

declaration

Book version (ML)

Compare to static scope of variables

exception X; ({val X=6;
[(let fun f(y) = raise X (let fun f(y) = x
and g(h) = h(1) and g(h) = let val x=2 in
handle X => 2 M h(1)
in in
g(f) handle X=>4 let val x=4 in g(f)
\ end) handle X => 6; end);

JavasScript version

Static Scope of Declarations

var X=6;
function f(y) { return x};
function g(h){

var x=2; return h(1) };
(function (y) {

var x=4; g(f)
1)(0);

Static scope: find
first x, following
access links from
the reference to X.

g(f)

f(1)

var X 6 j
access link = |
function f —
access link -
function g ——
access link —

var X 4
access link —

formal h =)

var X 2
access link =

formal y 1

Book version (ML)

Static Scope of Declarations

val x=6; val x 5 j
(let fun f(y) = x access link ===
and g(h) = let val x=2 in fun f \p
h(1) access link —
in fun g i
let val x=4 in g(f) access link | —
end); val x 4
Static scope: find g(f) |access link :
first x, following formal h
access links from val x 2
the reference to X. f(1) |access link | ——
formal y 1

Typing of Exceptions (Haskell)

Special type |IOError of exception

userkrror :: String -> |OError
Exceptions are raised and caught using

ioError :: IOError -> 10 a

catch ::10a ->(IOError->10a)->10 a
Questions
— Why is ioError(userError x) “any type”?
— Consider catch x (\e ->y) -types must match
Limitations
— Propagate by re-raising any unwanted exceptions
— Only strings are passed (implementation dependent)

ML Typing of Exceptions

e Typing of raise (exn)
— Definition of ML typing

Expression e has type t if normal termination of e
produces value of type t

— Raising exception is not normal termination
Example: 1 + raise X
* Typing of handle {exn) => (value)
— Converts exception to normal termination
— Need type agreement

— Examples
1+ ((raise X) handle X =>e) Type of e must be int
1+ (e, handle X =>e,) Type of e; e, must be int

Exceptions and Resource Allocation

* Resources may be allocated inside try block
* May be “garbage” after exception

* Examples
— Memory (problem in C/C++)
— Lock on database
— Threads

General problem: no obvious solution

Continuations

* |dea:

— The continuation of an expression is “the remaining
work to be done after evaluating the expression”

— Continuation of e is a function normally applied to e
* General programming technique
— Capture the continuation at some point in a program
— Use it later: “jump” or “exit” by function call
e Usefulin
— Compiler optimization: make control flow explicit

— Operating system scheduling, multiprogramming
— Web site design, other applications

JavasScript version

Example of Continuation Concept

* Expression
—2*x+ 3%y +1/x+2/y
 What is continuation of 1/x?

— Remaining computation after division

var before = 2*x + 3*y;
function cont(d) {return (before + d + 2/y)};
cont (1/x);

Book version (ML)

Example of Continuation Concept

* Expression
— 2*x+ 3%y +1/x+2/y
 What is continuation of 1/x?
— Remaining computation after division

let val before = 2*x + 3*y

fun continue(d) = before + d + 2/y
N

continue (1/x)
end

Example: Tail Recursive Factorial

e Standard recursive function
fact(n) = if n=0 then 1 else n*fact(n-1)

* Tail recursive
f(n,k) = if n=0 then k else f(n-1, n*k)
fact(n) = f(n,1)

* How could we derive this?

— Transform to continuation-passing form
— Optimize continuation function to single integer

Continuation view of factorial

fact(n) = if n=0 then 1 else n*fact(n-1)

fact(9) | return

— |

n

fact(8) | return

fact(7) | return

n

This invocation multiplies by 9 and returns
Continuation of fact(8) is
AX. 9%*X

Multiplies by 8 and returns
Continuation of fact(7) is
LY. (AX. 9*x) (8*y)

Multiplies by 7 and returns
Continuation of fact(6) is
Az, (hy. (AX. 9*x) (8*y)) (7*2)

Derivation of tail recursive form

e Standard function
fact(n) = if n=0 then 1 else n*fact(n-1)

e Continuation form
fact(n, k) =if n=0then k(1) — .~
else fact(n-1, Ax.k (n*x))

fact(n, Ax.x) computes n!

 Example computation
fact(3,Ax.x) =fact(2, Ay.((Ax.x) (3*y)))
= fact(1, Ax.((Ay.3%y)(2*x)))
= AX.((Ay.3*y)(2*x)) 1 =6

Tail Recursive Form

e Optimization of continuations
fact(n,a) = if n=0 then a
else fact(n-1, n*a)

Each continuation is effectively Ax.(a*x) for some a
 Example computation
fact(3,1) =fact(2, 3) was fact(2, Ay.3*y)
= fact(1, 6) was fact(1l, Ax.6*x)
=6

Other uses for continuations

e Explicit control

— Normal termination -- call continuation

— Abnormal termination -- do something else
* Compilation techniques

— Call to continuation is functional form of “go to”
— Continuation-passing style makes control flow explicit

MacQueen: “Callcc is the closest thing to a
‘come-from’ statement I've ever seen.”

Continuations in Mach OS

* OS kernel schedules multiple threads

— Each thread may have a separate stack
— Stack of blocked thread is stored within the kernel

* Mach “continuation” approach

— Blocked thread represented as

* Pointer to a continuation function, list of arguments

e Stack is discarded when thread blocks
— Programming implications

 Sys call such as msg_recv can block

* Kernel code calls msg_recv with continuation passed as arg
— Advantage/Disadvantage

» Saves a lot of space, need to write “continuation” functions

Continuations in compilation

* SML continuation-based compiler [Appel, Steele]
1) Lexical analysis, parsing, type checking
2) Translation to A-calculus form
3) Conversion to continuation-passing style (CPS)
4) Optimization of CPS
5) Closure conversion — eliminate free variables
6) Elimination of nested scopes
7) Register spilling — no expression with >n free vars
8) Generation of target assembly language program
9) Assembly to produce target-machine program

Summary

Structured Programming
— Go to considered harmful
Exceptions
— “structured” jumps that may return a value
— dynamic scoping of exception handler
Continuations
— Function representing the rest of the program
— Generalized form of tail recursion

— Used in Lisp/Scheme compilation, some OS projects, web
application development, ...

Heap memory management
— What is garbage?
— Standard ways of managing heap memory

Lisp: John McCarthy

e Pioneerin Al

— Formalize common-sense
reasoning

* Also
— Proposed timesharing
— Mathematical theory

* Lisp

stems from interest in

symbolic computation
(math, logic)

Lisp summary

 Many different dialects
— Lisp 1.5, Maclisp, ..., Scheme, ...
— Commonlisp has many additional features
— This course: a fragment of Lisp 1.5, approximately
But ignore static/dynamic scope until later in course
* Simple syntax
(+123)
(+(*23)(*45))
(fxy)

Easy to parse (Looking ahead: programs as data)

Atoms and Pairs

 Atoms include numbers, indivisible “strings”

<atom> ::= <smbl> | <number>
<smbl> ::= <char> | <smbl><char> | <smbl><digit>
<num> ::= <digit> | <num><digit>

* Dotted pairs
— Write (A . B) for pair

— Symbolic expressions, called S-expressions:
<sexp> = <atom> | (<sexp>.<sexp>)

Note on syntax
Book uses some kind of pidgin Lisp
In Scheme, a pair prints as (A . B), but (A . B) is not an expression

Basic Functions

* Functions on atoms and pairs:
cons car cdr eqd atom

e Declarations and control:
cond lambda define eval quote
* Example

(lambda (x) (cond ((atom x) x) (T (cons ‘A x))))
function f(x) = if atom(x) then x else cons(“A”,x)

 Functions with side-effects
rplaca rplacd

Evaluation of Expressions

* Read-eval-print loop

* Function call (functionarg, ... arg)
— evaluate each of the arguments

— pass list of argument values to function
e Special forms do not eval all arguments
— Example (cond (p, €4) ... (p, €,))
e proceed from left to right

* find the first p; with value true, eval this e,

— Example (quote A) does not evaluate A

Examples

(+45)
expression with value 9
(+(+12)(+45))
evaluate 1+2, then 445, then 3+9 to get value

(cons (quote A) (quote B))
pair of atoms A and B

(quote (+ 1 2))
evaluates to list (+1 2)

'(+12)
same as (quote (+ 1 2))

Conditional Expressions in Lisp

 Generalized if-then-else
(cond (p;e;) (pye,)... (p,e,))

 Evaluate conditions p, ... p,, left to right
* If p;is first condition true, then evaluate e,
* Value of e, is value of expression

No value for the expression if no p, true, or

p, ... p; false and p,,; has no value, or
relevant p, true and e, has no value

Examples

(cond ((<21)2) ((<12)1))
has value 1
(cond((<21)2) ((<32)3))
has no value
(cond (diverge 1) (true 0))
no value, if expression diverge loops forever

(cond (true 0) (diverge 1))

has value O

Function Expressions

* Form
(lambda (parameters) (function_body))

* Syntax comes from lambda calculus:

Af. Ax. T (f x)
(lambda (f) (lambda (x) (f (f x))))

* Defines a function but does not give it a name
((lambda (f) (lambda (x) (f (f x))))
(lambda (x) (+ 1 x)))

)

Example

(define twice
(lambda (f) (lambda (x) (f (f x))))

)

(define inc (lambda (x) (+ 1 x)))

((twice inc) 2)
= 4

Lisp Memory Model

e Cons cells

Address

Decrement

* Atoms and lists represented by cells

Atom A //
Atom B

Atom

Sharing
(a) (b)

L L

e Both structures could be printed as ((A.B). (A.B))

 Which is result of evaluating
(cons (cons 'A 'B) (cons 'A 'B)) ?

Note: Scheme actually prints using combination of list and dotted pairs

Garbage Collection

* Garbage:
At a given point in the execution of a program P, a
memory location mis garbage if no continued
execution of P from this point can access location m.
* Garbage Collection:
— Detect garbage during program execution
— GC invoked when more memory is needed
— Decision made by run-time system, not program

Examples

(car (cons(e;)(e,)))
Cells created in evaluation of e, may be garbage,
unless shared by e, or other parts of program

((lambda (x) (car (cons (... x...) (... x...)))
'(Big Mess))

The car and cdr of this cons cell may point to
overlapping structures.

Mark-and-Sweep Algorithm

* Assume tag bits associated with data
* Need list of heap locations named by program
e Algorithm:

— Set all tag bits to 0.

— Start from each location used directly in the
program. Follow all links, changing tag bit to 1

— Place all cells with tag = 0 on free list

Why Garbage Collection in Lisp?

 McCarthy's paper says this is

— “... more convenient for the programmer than a
system in which he has to keep track of and erase
unwanted lists."

* Does this reasoning apply equally well to C?

* |s garbage collection "more appropriate" for
Lisp than C? Why?

Summary

Structured Programming
— Go to considered harmful
Exceptions
— “structured” jumps that may return a value
— dynamic scoping of exception handler
Continuations
— Function representing the rest of the program
— Generalized form of tail recursion

— Used in Lisp/Scheme compilation, some OS projects, web
application development, ...

Heap memory management
— Definition of garbage
— Mark-and-sweep garbage collection algorithm

