
Control in Sequential Languages

CS 242 2012

Reading:

• Chapter 8, Sections 8.1 – 8.3 (only)

• Section 7.3 of The Haskell 98 Report, Exception Handling in the I/O Monad,

http://www.haskell.org/onlinelibrary/io-13.html (short)

• Chapter 3, Sections 3.3, 3.4.2, 3.4.3, 3.4.5, 3.4.8 (only)

Topics

• Structured Programming
– Go to considered harmful

• Exceptions
– “structured” jumps that may return a value
– dynamic scoping of exception handler

• Continuations
– Function representing the rest of the program
– Generalized form of tail recursion

• Heap memory management
– What is garbage?
– Standard ways of managing heap memory

Fortran Control Structure

10 IF (X .GT. 0.000001) GO TO 20

11 X = -X

 IF (X .LT. 0.000001) GO TO 50

20 IF (X*Y .LT. 0.00001) GO TO 30

 X = X-Y-Y

30 X = X+Y

 ...

50 CONTINUE

 X = A

 Y = B-A

 GO TO 11

 …

Similar structure may occur in assembly code

Historical Debate

• Dijkstra, Go To Statement Considered Harmful
– Letter to Editor, C ACM, March 1968
– Link on CS242 web site

• Knuth, Structured Prog. with go to Statements
– You can use goto, but please do so in structured way

…

• Continued discussion
– Welch, “GOTO (Considered Harmful)n, n is Odd”

• General questions
– Do syntactic rules force good programming style?
– Can they help?

Advance in Computer Science

• Standard constructs that structure jumps
if … then … else … end

while … do … end

for … { … }

case …

• Modern style
– Group code in logical blocks

– Avoid explicit jumps except for function return

– Cannot jump into middle of block or function body

Exceptions: Structured Exit

• Terminate part of computation

– Jump out of construct

– Pass data as part of jump

– Return to most recent site set up to handle exception

– Unnecessary activation records may be deallocated

• May need to free heap space, other resources

• Two main language constructs

– Establish exception handler to catch exception

– Statement or expression to raise or throw exception

 Often used for unusual or exceptional condition; other uses too

JavaScript Exceptions

throw e //jump to catch, passing exception object

try { … //code to try

} catch (e if e == …) { … //catch if first condition true

} catch (e if e == …) { … //catch if second condition true

} catch (e if e == …) { … //catch if third condition true

} catch (e){ … // catch any exception

} finally { … //code to execute after everything else

}

http://developer.mozilla.org/En/Core_JavaScript_1.5_Guide/

 Exception_Handling_Statements

JavaScript Example

function invert(matrix) {

 if … throw “Determinant”;

 …

};

try { … invert(myMatrix); …

}

catch (e) { …

 // recover from error

}

C++ Example

Matrix invert(Matrix m) {

 if … throw Determinant;

 …

};

try { … invert(myMatrix); …

}

catch (Determinant) { …

 // recover from error

}

Where is an exception caught?

• Dynamic scoping of handlers

– Throw to most recent catch on run-time stack

– Recall: stacks and activation records

• Which activation record link is used?
– Access link? Control link?

• Dynamic scoping is not an accident

– User knows how to handler error

– Author of library function does not

ML Exceptions (cover briefly so book is useful to you)

• Declaration
exception name of type

gives name of exception and type of data passed when raised

• Raise
raise name parameters

expression form to raise and exception and pass data

• Handler
exp1 handle pattern => exp2

evaluate first expression
if exception that matches pattern is raised,
 then evaluate second expression instead

General form allows multiple patterns.

Exception for Error Condition

- datatype ‘a tree = LF of ‘a | ND of (‘a tree)*(‘a tree)

- exception No_Subtree;

- fun lsub (LF x) = raise No_Subtree

 | lsub (ND(x,y)) = x;

> val lsub = fn : ‘a tree -> ‘a tree

– This function raises an exception when there is no
reasonable value to return

– We’ll look at typing later.

Exception for Efficiency

• Function to multiply values of tree leaves
fun prod(LF x) = x
| prod(ND(x,y)) = prod(x) * prod(y);

• Optimize using exception
fun prod(tree) =
 let exception Zero
 fun p(LF x) = if x=0 then (raise Zero) else x
 | p(ND(x,y)) = p(x) * p(y)
 in
 p(tree) handle Zero=>0
 end;

Dynamic Scope of Handler

try{

 function f(y) { throw “exn”};

 function g(h){ try {h(1)} catch(e){return 2} };

 try {

 g(f)

 } catch(e){4};

} catch(e){6};

Which catch catches the throw?

JavaScript version

scope

handler

Dynamic Scope of Handler

exception X;

(let fun f(y) = raise X

 and g(h) = h(1) handle X => 2

in

 g(f) handle X => 4

end) handle X => 6;

scope

handler

Which handler is used?

Book version (ML)

Dynamic Scope of Handler

try{

 function f(y) { throw “exn”};

 function g(h){ try {h(1)}

 catch(e){return 2}

 };

 try {

 g(f)

 } catch(e){4};

} catch(e){6};

catch(e) 6

formal h

catch(e) 2

access link

formal y 1

access link

g(f)

f(1)

fun f

access link

access link

 fun g

Dynamic scope:
find first handler,
going up the
dynamic call chain

catch(e) 4

access link

JavaScript version

Dynamic Scope of Handler

exception X;

(let fun f(y) = raise X

 and g(h) = h(1) handle X => 2

in

 g(f) handle X => 4

end) handle X => 6;

handler X 6

formal h

handler X 2

access link

formal y 1

access link

g(f)

f(1)

fun f

access link

access link

 fun g

Dynamic scope:
find first X handler,
going up the
dynamic call chain
leading to raise X.

handler X 4

access link

Book version (ML)

Compare to static scope of variables

try{

 function f(y) { throw “exn”};

 function g(h){ try {h(1)}

 catch(e){return 2}

 };

 try {

 g(f)

 } catch(e){4};

} catch(e){6};

 var x=6;

 function f(y) { return x};

 function g(h){ var x=2;

 return h(1)

 };

 (function (y) {

 var x=4;

 g(f)

 })(0);

JavaScript version

declaration

declaration

Compare to static scope of variables

exception X;

(let fun f(y) = raise X

 and g(h) = h(1)

 handle X => 2

in

 g(f) handle X => 4

end) handle X => 6;

val x=6;

(let fun f(y) = x

 and g(h) = let val x=2 in

 h(1)

 in

 let val x=4 in g(f)

end);

Book version (ML)

Static Scope of Declarations

var x=6;

function f(y) { return x};

function g(h){

 var x=2; return h(1) };

(function (y) {

 var x=4; g(f)

 })(0);

var x 6

formal h

var x 2

access link

formal y 1

access link

g(f)

f(1)

function f

access link

access link

 function g

Static scope: find
first x, following
access links from
the reference to X.

var x 4

access link

JavaScript version

Static Scope of Declarations

val x=6;

(let fun f(y) = x

 and g(h) = let val x=2 in

 h(1)

 in

 let val x=4 in g(f)

end);

val x 6

formal h

val x 2

access link

formal y 1

access link

g(f)

f(1)

fun f

access link

access link

 fun g

Static scope: find
first x, following
access links from
the reference to X.

val x 4

access link

Book version (ML)

Typing of Exceptions (Haskell)

• Special type IOError of exception
 userError :: String -> IOError

• Exceptions are raised and caught using
 ioError :: IOError -> IO a
 catch :: IO a -> (IOError -> IO a) -> IO a

• Questions
– Why is ioError(userError x) “any type”?
– Consider catch x (\e -> y) - types must match

• Limitations
– Propagate by re-raising any unwanted exceptions
– Only strings are passed (implementation dependent)

ML Typing of Exceptions

• Typing of raise exn
– Definition of ML typing

Expression e has type t if normal termination of e
produces value of type t

– Raising exception is not normal termination
Example: 1 + raise X

• Typing of handle exn => value
– Converts exception to normal termination
– Need type agreement
– Examples

1 + ((raise X) handle X => e) Type of e must be int
1 + (e1 handle X => e2) Type of e1, e2 must be int

Exceptions and Resource Allocation

• Resources may be allocated inside try block

• May be “garbage” after exception

• Examples

– Memory (problem in C/C++)

– Lock on database

– Threads

– …

General problem: no obvious solution

Continuations

• Idea:
– The continuation of an expression is “the remaining

work to be done after evaluating the expression”
– Continuation of e is a function normally applied to e

• General programming technique
– Capture the continuation at some point in a program
– Use it later: “jump” or “exit” by function call

• Useful in
– Compiler optimization: make control flow explicit
– Operating system scheduling, multiprogramming
– Web site design, other applications

Example of Continuation Concept

• Expression

– 2*x + 3*y + 1/x + 2/y

• What is continuation of 1/x?

– Remaining computation after division

 var before = 2*x + 3*y;

 function cont(d) {return (before + d + 2/y)};

 cont (1/x);

JavaScript version

Example of Continuation Concept

• Expression
– 2*x + 3*y + 1/x + 2/y

• What is continuation of 1/x?
– Remaining computation after division

 let val before = 2*x + 3*y

 fun continue(d) = before + d + 2/y

 in

 continue (1/x)

 end

Book version (ML)

Example: Tail Recursive Factorial

• Standard recursive function

fact(n) = if n=0 then 1 else n*fact(n-1)

• Tail recursive

f(n,k) = if n=0 then k else f(n-1, n*k)

fact(n) = f(n,1)

• How could we derive this?

– Transform to continuation-passing form

– Optimize continuation function to single integer

Continuation view of factorial

fact(n) = if n=0 then 1 else n*fact(n-1)

fact(9)

fact(8)

fact(7)

This invocation multiplies by 9 and returns

Continuation of fact(8) is

 x. 9*x

Multiplies by 8 and returns

Continuation of fact(7) is

 y. (x. 9*x) (8*y)

Multiplies by 7 and returns

Continuation of fact(6) is

 z. (y. (x. 9*x) (8*y)) (7*z)

return

n 9

...

return

n 8

...

return

n 7

...

Derivation of tail recursive form

• Standard function
fact(n) = if n=0 then 1 else n*fact(n-1)

• Continuation form
fact(n, k) = if n=0 then k(1)
 else fact(n-1, x.k (n*x))

fact(n, x.x) computes n!

• Example computation

fact(3,x.x) = fact(2, y.((x.x) (3*y)))

 = fact(1, x.((y.3*y)(2*x)))

 = x.((y.3*y)(2*x)) 1 = 6

continuation

Tail Recursive Form

• Optimization of continuations
fact(n,a) = if n=0 then a

 else fact(n-1, n*a)

Each continuation is effectively x.(a*x) for some a

• Example computation

fact(3,1) = fact(2, 3) was fact(2, y.3*y)

 = fact(1, 6) was fact(1, x.6*x)

 = 6

Other uses for continuations

• Explicit control
– Normal termination -- call continuation

– Abnormal termination -- do something else

• Compilation techniques
– Call to continuation is functional form of “go to”

– Continuation-passing style makes control flow explicit

 MacQueen: “Callcc is the closest thing to a

‘come-from’ statement I’ve ever seen.”

Continuations in Mach OS

• OS kernel schedules multiple threads
– Each thread may have a separate stack

– Stack of blocked thread is stored within the kernel

• Mach “continuation” approach
– Blocked thread represented as

• Pointer to a continuation function, list of arguments

• Stack is discarded when thread blocks

– Programming implications
• Sys call such as msg_recv can block

• Kernel code calls msg_recv with continuation passed as arg

– Advantage/Disadvantage
• Saves a lot of space, need to write “continuation” functions

Continuations in compilation

• SML continuation-based compiler [Appel, Steele]
1) Lexical analysis, parsing, type checking

2) Translation to -calculus form

3) Conversion to continuation-passing style (CPS)

4) Optimization of CPS

5) Closure conversion – eliminate free variables

6) Elimination of nested scopes

7) Register spilling – no expression with >n free vars

8) Generation of target assembly language program

9) Assembly to produce target-machine program

Summary

• Structured Programming
– Go to considered harmful

• Exceptions
– “structured” jumps that may return a value
– dynamic scoping of exception handler

• Continuations
– Function representing the rest of the program
– Generalized form of tail recursion
– Used in Lisp/Scheme compilation, some OS projects, web

application development, …

• Heap memory management
– What is garbage?
– Standard ways of managing heap memory

Lisp: John McCarthy

• Pioneer in AI
– Formalize common-sense

reasoning

• Also
– Proposed timesharing
– Mathematical theory
– ….

• Lisp
 stems from interest in

symbolic computation
(math, logic)

Lisp summary

• Many different dialects
– Lisp 1.5, Maclisp, …, Scheme, ...

– CommonLisp has many additional features

– This course: a fragment of Lisp 1.5, approximately
But ignore static/dynamic scope until later in course

• Simple syntax
(+ 1 2 3)

(+ (* 2 3) (* 4 5))

(f x y)

 Easy to parse (Looking ahead: programs as data)

Atoms and Pairs

• Atoms include numbers, indivisible “strings”
 <atom> ::= <smbl> | <number>

 <smbl> ::= <char> | <smbl><char> | <smbl><digit>

 <num> ::= <digit> | <num><digit>

• Dotted pairs

– Write (A . B) for pair

– Symbolic expressions, called S-expressions:
 <sexp> ::= <atom> | (<sexp> . <sexp>)

Note on syntax

Book uses some kind of pidgin Lisp

In Scheme, a pair prints as (A . B), but (A . B) is not an expression

Basic Functions

• Functions on atoms and pairs:
cons car cdr eq atom

• Declarations and control:

cond lambda define eval quote

• Example
(lambda (x) (cond ((atom x) x) (T (cons ‘A x))))

function f(x) = if atom(x) then x else cons(“A”,x)

• Functions with side-effects
rplaca rplacd

Evaluation of Expressions

• Read-eval-print loop

• Function call (function arg1 ... argn)

– evaluate each of the arguments

– pass list of argument values to function

• Special forms do not eval all arguments
– Example (cond (p1 e1) ... (pn en))

• proceed from left to right

• find the first pi with value true, eval this ei

– Example (quote A) does not evaluate A

Examples

(+ 4 5)
 expression with value 9

(+ (+ 1 2) (+ 4 5))
 evaluate 1+2, then 4+5, then 3+9 to get value

(cons (quote A) (quote B))
 pair of atoms A and B

(quote (+ 1 2))
 evaluates to list (+ 1 2)

'(+ 1 2)
 same as (quote (+ 1 2))

Conditional Expressions in Lisp

• Generalized if-then-else

 (cond (p1 e1) (p2 e2) … (pn en))

• Evaluate conditions p1 … pn left to right

• If pi is first condition true, then evaluate ei

• Value of ei is value of expression

No value for the expression if no pi true, or

 p1 … pi false and pi+1 has no value, or

 relevant pi true and ei has no value

Examples

(cond ((< 2 1) 2) ((< 1 2) 1))

 has value 1

(cond ((< 2 1) 2) ((< 3 2) 3))

 has no value

(cond (diverge 1) (true 0))

 no value, if expression diverge loops forever

(cond (true 0) (diverge 1))

 has value 0

Function Expressions

• Form
 (lambda (parameters) (function_body))

• Syntax comes from lambda calculus:
 f. x. f (f x)

 (lambda (f) (lambda (x) (f (f x))))

• Defines a function but does not give it a name
 ((lambda (f) (lambda (x) (f (f x))))

 (lambda (x) (+ 1 x)))

)

Example

(define twice

 (lambda (f) (lambda (x) (f (f x))))

)

(define inc (lambda (x) (+ 1 x)))

((twice inc) 2)

 4

Lisp Memory Model

• Cons cells

• Atoms and lists represented by cells

Address Decrement

Atom A

Atom B

Atom C

0

Sharing

(a) (b)

• Both structures could be printed as ((A.B) . (A.B))

• Which is result of evaluating
 (cons (cons 'A 'B) (cons 'A 'B)) ?

A B A B A B

Note: Scheme actually prints using combination of list and dotted pairs

Garbage Collection

• Garbage:

 At a given point in the execution of a program P, a
memory location m is garbage if no continued
execution of P from this point can access location m.

• Garbage Collection:

– Detect garbage during program execution

– GC invoked when more memory is needed

– Decision made by run-time system, not program

Examples

 (car (cons (e1) (e2)))

 Cells created in evaluation of e2 may be garbage,

 unless shared by e1 or other parts of program

((lambda (x) (car (cons (… x…) (... x ...)))

 '(Big Mess))

 The car and cdr of this cons cell may point to
overlapping structures.

Mark-and-Sweep Algorithm

• Assume tag bits associated with data

• Need list of heap locations named by program

• Algorithm:

– Set all tag bits to 0.

– Start from each location used directly in the
program. Follow all links, changing tag bit to 1

– Place all cells with tag = 0 on free list

Why Garbage Collection in Lisp?

• McCarthy's paper says this is

– “… more convenient for the programmer than a
system in which he has to keep track of and erase
unwanted lists."

• Does this reasoning apply equally well to C?

• Is garbage collection "more appropriate" for
Lisp than C? Why?

Summary

• Structured Programming
– Go to considered harmful

• Exceptions
– “structured” jumps that may return a value
– dynamic scoping of exception handler

• Continuations
– Function representing the rest of the program
– Generalized form of tail recursion
– Used in Lisp/Scheme compilation, some OS projects, web

application development, …

• Heap memory management
– Definition of garbage
– Mark-and-sweep garbage collection algorithm

