
The IO Monad

Slides from John Mitchell, K Fisher, and

S. Peyton Jones

Reading: “Tackling the Awkward Squad,” Sections 1-2

 “Real World Haskell,” Chapter 7: I/O

CS 242 2012

Beauty...

• Functional programming is beautiful:
– Concise and powerful abstractions

• higher-order functions, algebraic data types, parametric
polymorphism, principled overloading, ...

– Close correspondence with mathematics
• Semantics of a code function is the mathematical function
• Equational reasoning: if x = y, then f x = f y
• Independence of order-of-evaluation (Confluence, aka Church-Rosser)

e1 * e2

e1’ * e2 e1 * e2’

result

The compiler can

choose the best

sequential or parallel

evaluation order

...and the Beast

• But to be useful as well as beautiful, a language must
manage the “Awkward Squad”:

– Input/Output

– Imperative update

– Error recovery (eg, timeout, divide by zero, etc.)

– Foreign-language interfaces

– Concurrency control

The whole point of a running a program is to

interact with the external environment and affect it

The Direct Approach

• Just add imperative constructs “the usual way”
– I/O via “functions” with side effects:

– Imperative operations via assignable reference cells:

– Error recovery via exceptions
– Foreign language procedures mapped to “functions”
– Concurrency via operating system threads

• Can work if language determines evaluation order
– Ocaml, Standard ML are good examples of this approach

putchar ‘x’ + putchar ‘y’

z = ref 0; z := !z + 1;

f(z);

w = !z (* What is the value of w? *)

But what if we are “lazy”?

• Example:
– Output depends upon the evaluation order of (+).

• Example:
– Output depends on how list is used

– If only used in length ls, nothing will be
printed because length does not evaluate
elements of list

In a lazy functional language, like Haskell, the order of

evaluation is deliberately undefined, so the “direct

approach” will not work.

res = putchar ‘x’ + putchar ‘y’

ls = [putchar ‘x’, putchar ‘y’]

Fundamental question

• Is it possible to regard pure Haskell as the
basic programming paradigm, and add
imperative features without changing the
meaning of pure Haskell expressions?

Tackling the Awkward Squad

• Basic conflict
– Laziness and side effects are incompatible

• Historical aside: “Jensen’s device” in Algol 60; see book (p96)

– Side effects are important!

• History
– This conflict was embarrassing to the lazy functional

programming community
– In early 90’s, a surprising solution (the monad) emerged from an

unlikely source (category theory).

• Haskell IO monad tackles the awkward squad
– I/O, imperative state, exceptions, foreign functions, concurrency
– Practical application of theoretical insight by E Moggi

Web Server Example

• The reading uses a web server as an example

• Lots of I/O, need for error recovery, need to call
external libraries, need for concurrency

Web server

Client 1 Client 2 Client 3 Client 4

1500 lines of Haskell

700 connections/sec

Writing High-Performance Server Applications in Haskell, by Simon Marlow

Monadic

Input and Output

Problem

A functional

program defines a

pure function, with

no side effects

The whole point of

running a program

is to have some

side effect

The term “side effect” itself is misleading

Before Monads

• Streams
– Program sends stream of requests to OS, receives stream

of responses

• Continuations
– User supplies continuations to I/O routines to specify

how to process results (will cover continuations Wed)

• World-Passing
– The “State of the World” is passed around and updated,

like other data structures
– Not a serious contender because designers didn’t know

how to guarantee single-threaded access to the world

• Haskell 1.0 Report adopted Stream model
– Stream and Continuation models were discovered to be

inter-definable

Stream Model: Basic Idea

• Move side effects outside of functional program

• Haskell main :: String -> String

• Gets more complicated …

– But what if you need to read more than one file? Or delete
files? Or communicate over a socket? ...

Haskell

main

program

standard

input

location

(file or

stdin)

standard

output

location

(file or

stdin)

Wrapper Program, written in some other language

Stream Model

• Enrich argument and return type of main to
include all input and output events.

• Wrapper program interprets requests and
adds responses to input.

main :: [Response] -> [Request]

data Request = ReadFile Filename

 | WriteFile FileName String

 | …

data Response = RequestFailed

 | ReadOK String

 | WriteOk

 | Success | …

Stream Model
• Move side effects outside of functional program

• If Haskell main :: [Response] -> [Request]

• Laziness allows program to generate requests prior to processing
any responses.

Haskell

program

[Response] [Request]

Example in Stream Model
• Haskell 1.0 program asks user for filename, echoes name, reads

file, and prints to standard out

• The ~ denotes a lazy pattern, which is evaluated only when the

corresponding identifier is needed.

main :: [Response] -> [Request]

main ~(Success : ~((Str userInput) : ~(Success : ~(r4 : _))))

 = [AppendChan stdout "enter filename\n",

 ReadChan stdin,

 AppendChan stdout name,

 ReadFile name,

 AppendChan stdout

 (case r4 of

 Str contents -> contents

 Failure ioerr -> "can’t open file")

] where (name : _) = lines userInput

Stream Model is Awkward!

• Hard to extend

– New I/O operations require adding new constructors
to Request and Response types, modifying wrapper

• Does not associate Request with Response

– easy to get “out-of-step,” which can lead to deadlock

• Not composable

– no easy way to combine two “main” programs

• ... and other problems!!!

Monadic I/O: The Key Idea

A value of type (IO t) is an “action”

When performed, an action may do some

input/output and deliver a result of type t

Monads

• General concept from category theory

– Adopted in Haskell for I/O, side effects, …

• A monad consists of:

– A type constructor M

– A function bind :: M a -> (a -> M b) -> M b

– A function return :: a -> M a

• Plus:

– Laws about how these operations interact

Monad Examples

• Error handling M(A) = A {error}
– Add a special “error value” to a type

– Define sequencing operator “;” to propagate error

• Information-flow tracking M(A) = A Labels
– Add information flow label to each value

– Define “;” to check and propagate labels

• Nontermination M(A) = A {}
– Result of computation can be value or “run forever”

– Define “;” to proceed when first computation halts

• State M(A) = A States
– Computation produces value and new state

– Define “;” to make output state of first to input state of second

Can write code to compute on A, but run it using M(A)

Eugenio
Moggi

A Helpful Picture

A value of type (IO t) is an “action.” When performed, it may

do some input/output before delivering a result of type t

type IO t = World -> (t, World)

IO t

result :: t

Actions are First Class

• “Actions” are sometimes called “computations”

• An action is a first-class value

• Evaluating an action has no effect; performing
the action has the effect

A value of type (IO t) is an “action.” When performed, it may

do some input/output before delivering a result of type t.

type IO t = World -> (t, World)

Simple I/O

getChar

Char

putChar

()

Char

getChar :: IO Char

putChar :: Char -> IO ()

main :: IO ()

main = putChar ‘x’

Main program is an

action of type IO ()

Connection Actions

• To read a character and then write it back out, we
need to connect two actions.

putChar

()

getChar

Char

The “bind” combinator

lets us make these

connections.

The Bind Combinator (>>=)

• We have connected two actions to make a new,
bigger action.

 putChar

()

 Char

getChar

(>>=) :: IO a -> (a -> IO b) -> IO b

echo :: IO ()

echo = getChar >>= putChar

The (>>=) Combinator

• Operator is called bind because it binds the result
of the left-hand action in the action on the right

• Performing compound action a >>= \x->b :
– performs action a, to yield value r
– applies function \x->b to r
– performs the resulting action b{x <- r}
– returns the resulting value v

 b

v

a

x r

Printing a Character Twice

• The parentheses are optional because lambda
abstractions extend “as far to the right as
possible.”

• The putChar function returns unit, so there is
no interesting value to pass on.

echoDup :: IO ()

echoDup = getChar >>= (\c ->

 putChar c >>= (\() ->

 putChar c))

The (>>) Combinator

• The “then” combinator (>>) does sequencing
when there is no value to pass:

(>>) :: IO a -> IO b -> IO b

m >> n = m >>= (_ -> n)

echoDup :: IO ()

echoDup = getChar >>= \c ->

 putChar c >>

 putChar c

echoTwice :: IO ()

echoTwice = echo >> echo

Getting Two Characters

• We want to return (c1,c2).

– But, (c1,c2) :: (Char, Char)

– We need to return value of type IO(Char, Char)

• We need to have some way to convert values
of “plain” type into the I/O Monad.

getTwoChars :: IO (Char,Char)

getTwoChars = getChar >>= \c1 ->

 getChar >>= \c2 ->

 ????

The return Combinator

• The action (return v) does no IO and
immediately returns v:

return :: a -> IO a

return

getTwoChars :: IO (Char,Char)

getTwoChars = getChar >>= \c1 ->

 getChar >>= \c2 ->

 return (c1,c2)

The “do” Notation
• The “do” notation adds syntactic sugar to make

monadic code easier to read.

• Do syntax designed to look imperative.

-- Do Notation

getTwoCharsDo :: IO(Char,Char)

getTwoCharsDo = do { c1 <- getChar ;

 c2 <- getChar ;

 return (c1,c2) }

-- Plain Syntax

getTwoChars :: IO (Char,Char)

getTwoChars = getChar >>= \c1 ->

 getChar >>= \c2 ->

 return (c1,c2)

Desugaring “do” Notation

• The “do” notation only adds syntactic sugar:

do { x<-e; es } = e >>= \x -> do { es }

do { e; es } = e >> do { es }

do { e } = e

do {let ds; es} = let ds in do {es}

The scope of variables bound in a generator is the rest of the

“do” expression.

The last item in a “do” expression must be an expression.

Syntactic Variations

• The following are equivalent:

do { x1 <- p1; ...; xn <- pn; q }

do x1 <- p1

 ...

 xn <- pn

 q

do x1 <- p1; ...; xn <- pn; q

If semicolons are omitted,

then the generators must

align. Indentation

replaces punctuation.

Bigger Example

• The getLine function reads a line of input:

getLine :: IO [Char]

getLine = do { c <- getChar ;

 if c == '\n' then

 return []

 else

 do { cs <- getLine;

 return (c:cs) }}

Note the “regular” code mixed with the monadic operations and

the nested “do” expression.

An Analogy: Monad as Assembly Line

• Each action in the IO monad is a stage in an assembly line

• For an action with type IO a, the type
– tags the action as suitable for the IO assembly line via the IO

type constructor.
– indicates that the kind of thing being passed to the next stage in

the assembly line has type a.

• The bind operator “snaps” two stages
together to build a compound stage.

• The return operator converts a pure value into a stage in the
assembly line.

• The assembly line does nothing until it is turned on.
• The only safe way to “run” an IO assembly is to execute the

program, either using ghci or running an executable.

1 2

• Running the program turns on the IO assembly line.

• The assembly line gets “the world” as its input and
delivers a result and a modified world.

• The types guarantee that the world flows in a single
thread through the assembly line.

Powering the Assembly Line

Result

ghci or compiled program

Control Structures

• Values of type (IO t) are first class, so we can
define our own control structures.

• Example use:

forever :: IO () -> IO ()

forever a = a >> forever a

repeatN :: Int -> IO () -> IO ()

repeatN 0 a = return ()

repeatN n a = a >> repeatN (n-1) a

 Main> repeatN 5 (putChar 'h')

For Loops

• Values of type (IO t) are first class, so we can
define our own control structures.

• Example use:

for :: [a] -> (a -> IO b) -> IO ()

for [] fa = return ()

for (x:xs) fa = fa x >> for xs fa

Main> for [1..10] (\x -> putStr (show x))

Sequencing

• Example use:

sequence :: [IO a] -> IO [a]

sequence [] = return []

sequence (a:as) = do { r <- a;

 rs <- sequence as;

 return (r:rs) }

Main> sequence [getChar, getChar, getChar]

A list of IO

actions.

An IO action

returning a list.

First Class Actions

Slogan: First-class actions let programmers

write application-specific control structures.

IO Provides Access to Files

• The IO Monad provides a large collection of
operations for interacting with the “World.”

• For example, it provides a direct analogy to the
Standard C library functions for files:

openFile :: FilePath -> IOMode -> IO Handle

hPutStr :: Handle -> String -> IO ()

hGetLine :: Handle -> IO String

hClose :: Handle -> IO ()

References

• The IO operations let us write programs that do I/O in a
strictly sequential, imperative fashion.

• Idea: We can leverage the sequential nature of the IO
monad to do other imperative things!

• A value of type IORef a is a reference to a mutable cell
holding a value of type a.

data IORef a -- Abstract type

newIORef :: a -> IO (IORef a)

readIORef :: IORef a -> IO a

writeIORef :: IORef a -> a -> IO ()

Example Using References

But this is terrible! Contrast with: sum [1..n]. Claims to need

side effects, but doesn’t really.

import Data.IORef -- import reference functions

-- Compute the sum of the first n integers

count :: Int -> IO Int

count n = do

 { r <- newIORef 0;

 addToN r 1 }

 where

 addToN :: IORef Int -> Int -> IO Int

 addToN r i | i > n = readIORef r

 | otherwise = do

 { v <- readIORef r

 ; writeIORef r (v + i)

 ; addToN r (i+1)}

Example Using References
import Data.IORef -- import reference functions

-- Compute the sum of the first n integers

count :: Int -> IO Int

count n = do

 { r <- newIORef 0;

 addToN r 1 }

 where

 addToN :: IORef Int -> Int -> IO Int

 addToN r i | i > n = readIORef r

 | otherwise = do

 { v <- readIORef r

 ; writeIORef r (v + i)

 ; addToN r (i+1)}

Just because you can write C code in Haskell, doesn’t mean

you should!

A Second Example

• Track the number of chars written to a file.

• Here it makes sense to use a reference

type HandleC = (Handle, IORef Int)

openFileC :: FilePath -> IOMode -> IO HandleC

openFileC file mode = do

 { h <- openFile file mode

 ; v <- newIORef 0

 ; return (h,v) }

hPutStrC :: HandleC -> String -> IO()

hPutStrC (h,r) cs = do

 { v <- readIORef r

 ; writeIORef r (v + length cs)

 ; hPutStr h cs }

The IO Monad as ADT

• All operations return an IO action, but only bind (>>=) takes
one as an argument.

• Bind is the only operation that combines IO actions, which
forces sequentiality.

• Within the program, there is no way out!

return :: a -> IO a

(>>=) :: IO a -> (a -> IO b) -> IO b

getChar :: IO Char

putChar :: Char -> IO ()

... more operations on characters ...

openFile :: [Char] -> IOMode -> IO Handle

... more operations on files ...

newIORef :: a -> IO (IORef a)

... more operations on references ...

Irksome Restriction?

• Suppose you wanted to read a configuration file at the
beginning of your program:

• The problem is that readFile returns an IO String,
not a String.

• Option 1: Write entire program in IO monad.
But then we lose the simplicity of pure code.

• Option 2: Escape from the IO Monad using a function
from IO String -> String.
But this is the very thing that is disallowed!

configFileContents :: [String]

configFileContents = lines (readFile "config") -- WRONG!

useOptimisation :: Bool

useOptimisation = "optimise" ‘elem‘ configFileContents

Type-Unsafe Haskell Programming

• Reading a file is an I/O action, so in general it matters
when we read the file.

• But we know the configuration file will not change
during the program, so it doesn’t matter when we
read it.

• This situation arises sufficiently often that Haskell
implementations offer one last unsafe I/O primitive:
unsafePerformIO.

unsafePerformIO :: IO a -> a

configFileContents :: [String]

configFileContents = lines(unsafePerformIO(readFile "config"))

unsafePerformIO

• The operator has a deliberately long name to
discourage its use.

• Its use comes with a proof obligation: a promise
to the compiler that the timing of this operation
relative to all other operations doesn’t matter.

unsafePerformIO :: IO a -> a

 Result

act

Invent

World

 Discard

World

unsafePerformIO

• As its name suggests, unsafePerformIO breaks the
soundness of the type system.

• So claims that Haskell is type safe only apply to programs
that don’t use unsafePerformIO.

• Similar examples are what caused difficulties in integrating
references with Hindley/Milner type inference in ML.

r :: forall a. IORef a -- This is bad!

r = unsafePerformIO (newIORef (error "urk"))

cast :: b -> c

cast x = unsafePerformIO (do {writeIORef r x;

 readIORef r })

Implementation

• GHC uses “world-passing semantics” for the IO monad

• It represents the “world” by an un-forgeable token of
type World, and implements bind and return as:

• Using this form, the compiler can do its normal
optimizations. The dependence on the world ensures
the resulting code will still be single-threaded.

• The code generator then converts the code to modify
the world “in-place.”

type IO t = World -> (t, World)

return :: a -> IO a

return a = \w -> (a,w)

(>>=) :: IO a -> (a -> IO b) -> IO b

(>>=) m k = \w -> case m w of (r,w’) -> k r w’

Monads

• What makes the IO Monad a Monad?

• A monad consists of:

– A type constructor M

– A function bind :: M a -> (a -> M b) -> M b

– A function return :: a -> M a

• Plus: Laws about how these interact

Monad Laws

return x >>= f = f x

m >>= return = m

do { x <- m1;

 y <- m2;

 m3 }

do { y <- do { x <- m1;

 m2 }

 m3}

=

if x not in free vars of m3

Derived Laws for (>>) and done

done >> m = m

m >> done = m

m1 >> (m2 >> m3) = (m1 >> m2) >> m3

(>>) :: IO a -> IO b -> IO b

m >> n = m >>= (_ -> n)

done :: IO ()

done = return ()

Reasoning

• Using the monad laws and equational
reasoning, we can prove program properties.

putStr :: String -> IO ()

putStr [] = done

putStr (c:s) = putChar c >> putStr s

Proposition:

 putStr r >> putStr s = putStr (r ++ s)

putStr :: String -> IO ()

putStr [] = done

putStr (c:cs) = putChar c >> putStr cs

Proof: By induction on r.

Base case: r is []

 putStr [] >> putStr s

 = (definition of putStr)

 done >> putStr s

 = (first monad law for >>)

 putStr s

 = (definition of ++)

 putStr ([] ++ s)

Induction case: r is (c:cs) …

Proposition:

 putStr r >> putStr s = putStr (r ++ s)

Summary

• A complete Haskell program is a single IO action called
main. Inside IO, code is single-threaded.

• Big IO actions are built by gluing together smaller ones with
bind (>>=) and by converting pure code into actions with
return.

• IO actions are first-class.
– They can be passed to functions, returned from functions, and

stored in data structures.
– So it is easy to define new “glue” combinators.

• The IO Monad allows Haskell to be pure while efficiently
supporting side effects.

• The type system separates the pure from the effectful code.

Comparison

• In languages like ML or Java, the fact that the
language is in the IO monad is baked in to the
language. There is no need to mark anything in
the type system because it is everywhere.

• In Haskell, the programmer can choose when to
live in the IO monad and when to live in the
realm of pure functional programming.

• So it is not Haskell that lacks imperative features,
but rather the other languages that lack the
ability to have a statically distinguishable pure
subset.

