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Polymorphism vs Overloading 

• Parametric polymorphism 
– Single algorithm may be given many types 
– Type variable may be replaced by any  type 
– if f::tt then f::IntInt, f::BoolBool, ...    

• Overloading 
– A single symbol may refer to more than one 

algorithm. 
– Each algorithm may have different type. 
– Choice of algorithm determined by type context. 
– + has types Int  Int  Int and Float  Float  

Float, but not ttt for arbitrary t. 



Why Overloading? 

• Many useful functions are not parametric 

• Can list membership work for any type? 
 

 

– No!  Only for types w for that support equality. 

• Can list sorting work for any type? 
 

 

– No!  Only for types w that support ordering. 

member :: [w] -> w -> Bool 

sort :: [w] -> [w] 



Why Overloading? 

• Many useful functions are not parametric. 

• Can serialize work for any type? 

 

 

– No!  Only for types w that support serialization. 

• Can sumOfSquares work for any type? 

 

 

– No!  Only for types that support numeric operations. 

serialize:: w -> String 

sumOfSquares:: [w] -> w 



Overloading Arithmetic, Take 1 

• Allow functions containing overloaded symbols to define 
multiple functions: 

 

 

 

• But consider: 

 

 

 

• This approach has not been widely used because of 
exponential growth in number of versions. 

square x = x * x        -- legal 

-- Defines two versions:  

-- Int -> Int and Float -> Float 

squares (x,y,z) = 

   (square x, square y, square z) 

-- There are 8 possible versions! 



Overloading Arithmetic, Take 2 

• Basic operations such as + and * can be overloaded, 
but not functions defined from them 

 

 

 

 

• Standard ML uses this approach. 

• Not satisfactory: Programmer cannot define 
functions that implementation might support 

3 * 3             -- legal 

3.14 * 3.14       -- legal 

square x = x * x  -- Int -> Int 

square 3          -- legal 

square 3.14       -- illegal  



Overloading Equality, Take 1 

• Equality defined only for types that admit equality:       
types not containing function or abstract types. 

 
 
 

 

• Overload equality like arithmetic ops + and * in SML. 
• But then we can’t define functions using ‘==‘: 

 
 
 
 

 
• Approach adopted in first version of SML. 

3 * 3 == 9            -- legal 

‘a’ == ‘b’            -- legal 

\x->x == \y->y+1      -- illegal 

member [] y     = False 

member (x:xs) y = (x==y) || member xs y 

 

member [1,2,3] 3        -- ok if default is Int 

member “Haskell” ‘k’    -- illegal  



Overloading Equality, Take 2 

• Make type of equality fully polymorphic 

 

• Type of list membership function 

 

• Miranda used this approach. 

– Equality applied to a function yields a runtime error 

– Equality applied to an abstract type compares the 
underlying representation, which violates abstraction 
principles 

 

(==) :: a -> a -> Bool 

member :: [a] -> a -> Bool 



Overloading Equality, Take 3 

• Make equality polymorphic in a limited way:  

 
where a(==) is type variable restricted to types with equality 

• Now we can type the member function: 

 

 

 

 

• Approach used in SML today, where the type a(==) is 
called an “eqtype variable” and is written ``a.  

 

 

(==) :: a(==) -> a(==) -> Bool 

member :: a(==) -> [a(==)] -> Bool 

member  4         [2,3] :: Bool       

member ‘c’        [‘a’, ‘b’, ‘c’] :: Bool 

member (\y->y *2) [\x->x, \x->x + 2]  -- type error 

Only provides overloading for == 



Type Classes 

• Type classes solve these problems 
– Provide concise types to describe overloaded 

functions, so no exponential blow-up 

– Allow users to define functions using overloaded 
operations, eg, square, squares, and member 

– Allow users to declare new collections of 
overloaded functions: equality and arithmetic 
operators are not privileged built-ins 

– Generalize ML’s eqtypes to arbitrary types 

– Fit within type inference framework 



Intuition 

• A function to sort lists can be passed a 
comparison operator as an argument: 

 

 

 

– This allows the function to be parametric 

• We can built on this idea … 

 

qsort:: (a -> a -> Bool) -> [a] -> [a] 

qsort cmp [] = [] 

qsort cmp (x:xs) = qsort cmp (filter (cmp x) xs)  

          ++ [x] ++  

                   qsort cmp (filter (not.cmp x) xs) 



Intuition  (continued) 

• Consider the “overloaded” parabola function  

 

• We can rewrite the function to take the 
operators it contains as an argument 

 
– The extra parameter is a “dictionary” that 

provides implementations for the overloaded ops.  

– We have to rewrite all calls to pass appropriate 
implementations for plus and times: 

 

parabola x = (x * x) + x  

parabola’ (plus, times) x = plus (times x x) x 

y = parabola’(intPlus,intTimes) 10 

z = parabola’(floatPlus, floatTimes) 3.14 



Systematic programming style 

-- Dictionary type 

data MathDict a = MkMathDict (a->a->a) (a->a->a) 

 

-- Accessor functions 

get_plus :: MathDict a -> (a->a->a) 

get_plus (MkMathDict p t) = p 

 

get_times :: MathDict a -> (a->a->a) 

get_times (MkMathDict p t) = t 

 

-- “Dictionary-passing style” 

parabola :: MathDict a -> a -> a 

parabola dict x = let plus  = get_plus  dict 

                      times = get_times dict 

                  in plus (times x x) x 

Type class declarations 

will generate Dictionary 

type and selector 

functions  



Systematic programming style 

-- Dictionary type 

data MathDict a = MkMathDict (a->a->a) (a->a->a) 

 

-- Dictionary construction 

intDict   = MkMathDict intPlus   intTimes 

floatDict = MkMathDict floatPlus floatTimes 

 

-- Passing dictionaries 

y = parabola intDict   10 

z = parabola floatDict 3.14 

Type class instance declarations 

produce instances of the Dictionary 

Compiler will add a dictionary 

parameter and rewrite the body as 

necessary 



Type Class Design Overview 

• Type class declarations  
– Define a set of operations,  give the set a name 

– Example: Eq a type class 
• operations == and \= with type a -> a -> Bool 

• Type class instance declarations 
– Specify the implementations for a particular type 

– For Int instance, == is defined to be integer equality 

• Qualified types 
– Concisely express the operations required on 

otherwise polymorphic type 

 member:: Eq w => w -> [w] -> Bool 



• If a function works for every type with particular 
properties, the type of the function says just that: 

 

 

 

• Otherwise, it must work for any type whatsoever 

 

Qualified Types 

Member :: Eq w => w -> [w] -> Bool 

sort      :: Ord a  => [a] -> [a] 

serialise :: Show a => a -> String 

square    :: Num n  => n -> n 

squares   ::(Num t, Num t1, Num t2) =>  

                 (t, t1, t2) -> (t, t1, t2) 

“for all types w that 

support the Eq 

operations” 

reverse :: [a] -> [a] 

filter  :: (a -> Bool) -> [a] -> [a] 



Type Classes 

square :: Num n => n -> n 

square x = x*x 

class Num a where 

  (+)    :: a -> a -> a 

  (*)    :: a -> a -> a 

  negate :: a -> a 

  ...etc... 

FORGET all 

you know 

about OO 

classes! 

The class declaration 

says what the Num 

operations are 

Works for any type 

‘n’ that supports the 

Num operations 

instance Num Int where 

  a + b    = intPlus  a b 

  a * b    = intTimes a b 

  negate a = intNeg a 

  ...etc... 

An instance 

declaration for a type 

T says how the Num 

operations are 

implemented on T’s 

intPlus  :: Int -> Int -> Int 

intTimes :: Int -> Int -> Int  

etc, defined as primitives 



Compiling Overloaded Functions 

square :: Num n => n -> n 

square x = x*x 

square :: Num n -> n -> n 

square d x = (*) d x x 

The “Num n =>” turns into an extra value argument to 

the function.  It is a value of data type Num n and it 

represents a dictionary of  the required operations. 

When you write this... ...the compiler generates this 

A value of type (Num n) is a dictionary of 

the Num operations for type n 



Compiling Type Classes 

square :: Num n => n -> n 

square x = x*x 

class Num n where 

  (+)    :: n -> n -> n 

  (*)    :: n -> n -> n 

  negate :: n -> n 

  ...etc... 

The class decl translates to: 

A data type decl for Num 

A selector function for each 

class operation 

square :: Num n -> n -> n 

square d x = (*) d x x 

data Num n  

  = MkNum (n -> n -> n) 

     (n -> n -> n) 

     (n -> n) 

     ...etc... 

... 

(*) :: Num n -> n -> n -> n 

(*) (MkNum _ m _ ...) = m 

When you write this... ...the compiler generates this 

A value of type (Num n) is a dictionary of 

the Num operations for type n 



dNumInt :: Num Int 

dNumInt = MkNum intPlus 

                intTimes 

                intNeg 

                ... 

Compiling Instance Declarations 

square :: Num n => n -> n 

square x = x*x 

square :: Num n -> n -> n 

square d x = (*) d x x 

instance Num Int where 

  a + b    = intPlus  a b 

  a * b    = intTimes a b 

  negate a = intNeg a 

  ...etc... 

When you write this... ...the compiler generates this 

A value of type (Num n) is a dictionary of 

the Num operations for type n 

An instance decl for type T 

translates to a value 

declaration for the Num 

dictionary for T 



Implementation Summary 

• The compiler translates each function that uses an 
overloaded symbol into a function with an extra parameter: 
the dictionary. 

• References to overloaded symbols are rewritten by the 
compiler to lookup the symbol in the dictionary. 

• The compiler converts each type class declaration into a 
dictionary type declaration and a set of selector functions. 

• The compiler converts each instance declaration into a 
dictionary of the appropriate type. 

• The compiler rewrites calls to overloaded functions to pass 
a dictionary.  It uses the static, qualified type of the 
function to select the dictionary. 



Functions with Multiple Dictionaries 

squares :: (Num a, Num b, Num c) => (a, b, c) -> (a, b, c) 

squares(x,y,z) = (square x, square y, square z) 

squares :: (Num a, Num b, Num c) -> (a, b, c) -> (a, b, c) 

squares (da,db,dc) (x, y, z) =  

                 (square da x, square db y, square dc z) 

Pass appropriate 

dictionary on to each 

square function.  

Note the concise type for 

the squares function! 



Compositionality 

sumSq :: Num n => n -> n -> n 

sumSq x y = square x + square y 

sumSq :: Num n -> n -> n -> n 

sumSq d x y = (+) d (square d x) 

      (square d y) 

Pass on d to square 
Extract addition 

operation from d 

• Overloaded functions can be defined from 
other overloaded functions: 



Compositionality 

class Eq a where 

  (==) :: a -> a -> Bool 

 

instance Eq Int where 

  (==) = intEq     -- intEq primitive equality 

 

instance (Eq a, Eq b) => Eq(a,b) 

  (u,v) == (x,y)     = (u == x) && (v == y) 

 

instance Eq a => Eq [a] where 

  (==) []     []     = True 

  (==) (x:xs) (y:ys) = x==y && xs == ys 

  (==) _      _      = False 

• Build compound instances from simpler ones: 



Compound Translation 

class Eq a where 

  (==) :: a -> a -> Bool 

instance Eq a => Eq [a] where 

  (==) []     []     = True 

  (==) (x:xs) (y:ys) = x==y && xs == ys 

  (==) _      _      = False 

data Eq = MkEq (a->a->Bool)    -- Dictionary type 

(==) (MkEq eq) = eq            -- Selector 

dEqList :: Eq a -> Eq [a]      -- List Dictionary 

dEqList d = MkEq eql 

  where 

    eql []     []     = True 

    eql (x:xs) (y:ys) = (==) d x y && eql xs ys 

    eql _      _      = False   

• Build compound instances from simpler ones.  



Many Type Classes 

• Eq: equality 
• Ord: comparison 
• Num: numerical operations 
• Show: convert to string 
• Read: convert from string 
• Testable, Arbitrary: testing. 
• Enum: ops on sequentially ordered types 
• Bounded: upper and lower values of a type 
• Generic programming, reflection, monads, … 
• And many more. 
 

 



Subclasses 

• We could treat the Eq and Num type classes separately 
 

 

 

– But we expect any type supporting Num to also support Eq 

• A subclass declaration expresses this relationship: 

 

 

 

• With that declaration, we can simplify the type of the function 

memsq :: (Eq a, Num a) => a -> [a] -> Bool 

memsq x xs = member (square x) xs 

class Eq a => Num a where 

  (+) :: a -> a -> a 

  (*) :: a -> a -> a 

memsq :: Num a => a -> [a] -> Bool 

memsq x xs = member (square x) xs 



Default Methods 

• Type classes can define “default methods” 

 

 

 

 

 

• Instance declarations can override default by 
providing a more specific definition. 

-- Minimal complete definition: 

--     (==) or (/=) 

class Eq a where 

    (==) :: a -> a -> Bool 

    x == y    =  not (x /= y) 

    (/=) :: a -> a -> Bool 

    x /= y    =  not (x == y) 



Deriving 

• For Read, Show, Bounded, Enum, Eq, and Ord, the compiler 
can generate instance declarations automatically 

 

 

 

 

 

 

 

 

 

 

– Ad hoc : derivations apply only to types where derivation code works 

data Color = Red | Green | Blue 

     deriving (Show, Read, Eq, Ord) 

Main> show Red 

“Red” 

Main> Red < Green 

True 

Main>let c :: Color = read “Red” 

Main> c 

Red 



Numeric Literals 

class Num a where 

  (+) :: a -> a -> a 

  (-) :: a -> a -> a  

  fromInteger :: Integer -> a 

  ... 

 

inc :: Num a => a -> a 

inc x = x + 1 

Even literals are 

overloaded. 

1 :: (Num a) => a 

“1” means  

“fromInteger 1” 

Advantages: 

- Numeric literals can be interpreted as values of 

any appropriate numeric type   

- Example: 1 can be an Integer or a Float or a 

user-defined numeric type. 



Example: Complex Numbers 

• We can define a data type of complex 
numbers and make it an instance of Num. 

data Cpx a = Cpx a a 

  deriving (Eq, Show) 

 

instance Num a => Num (Cpx a) where 

  (Cpx r1 i1) + (Cpx r2 i2) = Cpx (r1+r2) (i1+i2) 

  fromInteger n = Cpx (fromInteger n) 0 

  ... 

class Num a where 

  (+) :: a -> a -> a 

  fromInteger :: Integer -> a 

  ... 



Example: Complex Numbers 

• And then we can use values of type Cpx in 
any context requiring a Num:  

data Cpx a = Cpx a a 

 

c1 = 1 :: Cpx Int 

c2 = 2 :: Cpx Int 

c3 = c1 + c2 

 

parabola x = (x * x) + x 

c4 = parabola c3 

i1 = parabola 3 



Completely Different Example 

• Recall: QuickCheck is a Haskell library for 
randomly testing Boolean properties of code. 

reverse [] = [] 

reverse (x:xs) = (reverse xs) ++ [x] 

-- Write properties in Haskell 

prop_RevRev :: [Int] -> Bool 

prop_RevRev ls = reverse (reverse ls) == ls 

Prelude Test.QuickCheck> quickCheck prop_RevRev 

+++ OK, passed 100 tests 

 

Prelude Test.QuickCheck> :t quickCheck  

quickCheck :: Testable a => a -> IO () 



quickCheck :: Testable a => a -> IO () 

 

class Testable a where 

  test :: a -> RandSupply -> Bool 

instance Testable Bool where 

  test b r = b 

 

class Arbitrary a where 

  arby :: RandSupply -> a  

instance (Arbitrary a, Testable b)  

             => Testable (a->b) where 

  test f r = test (f (arby r1)) r2 

              where (r1,r2) = split r 

split :: RandSupply -> (RandSupply, RandSupply) 

QuickCheck (II) 
prop_RevRev :: [Int] -> Bool 



QuickCheck (III) 

test prop_RevRev r 

= test (prop_RevRev (arby r1)) r2 

  where (r1,r2) = split r 

= prop_RevRev (arby r1) 

prop_RevRev :: [Int]-> Bool 

class Testable a where 

  test :: a -> RandSupply -> Bool 

instance Testable Bool where 

  test b r = b 

 

instance (Arbitrary a, Testable b)  

     => Testable (a->b) where 

  test f r = test (f (arby r1)) r2 

             where (r1,r2) = split r 

Using instance for Bool 

Using instance for (->) 



QuickCheck  (IV) 
class Arbitrary a where 

  arby :: RandSupply -> a  

 

instance Arbitrary Int where 

  arby r = randInt r 

 

instance Arbitrary a 

     => Arbitrary [a] where 

  arby r | even r1 = [] 

         | otherwise = arby r2 : arby r3 

    where 

      (r1,r’) = split r 

      (r2,r3) = split r’ 

split :: RandSupply -> (RandSupply, RandSupply) 

randInt :: RandSupply -> Int 

Generate cons value 

Generate Nil value 



QuickCheck (V) 

• QuickCheck uses type classes to auto-generate 

– random values 

– testing functions 

    based on the type of the function under test 

• Not built into Haskell – QuickCheck is a library! 

• Plenty of wrinkles, especially 

– test data should satisfy preconditions 

– generating test data in sparse domains 

 
QuickCheck: A Lightweight tool for random testing of Haskell Programs 

http://portal.acm.org/citation.cfm?id=351266
http://portal.acm.org/citation.cfm?id=351266


Type Inference 

• Type inference infers a qualified type Q => T 
– T is a Hindley Milner type, inferred as usual 

– Q is set of type class predicates, called a constraint 

• Consider the example function: 

 

 

 
 

– Type T is    a -> [a] -> Bool 

– Constraint Q is  { Ord a, Eq a, Eq [a]} 

 

example z xs =  

   case xs of 

     []     -> False 

     (y:ys) -> y > z || (y==z && ys == [z]) 

Ord a  because    y>z 

Eq a    because   y==z 

Eq [a]  because   ys == [z] 



Type Inference 

• Constraint sets Q can be simplified: 
– Eliminate duplicates 

• {Eq a, Eq a} simplifies to {Eq a} 

– Use an instance declaration 
• If we have instance Eq a => Eq [a],                                 
• then {Eq a, Eq [a]} simplifies to {Eq a} 

– Use a class declaration 
• If we have class Eq a => Ord a where ...,                          
• then {Ord a, Eq a} simplifies to {Ord a} 

• Applying these rules,  
– {Ord a, Eq a, Eq[a]} simplifies to {Ord a} 



Type Inference 

• Putting it all together: 

 

 

 

– T = a -> [a] -> Bool 

– Q = {Ord a, Eq a, Eq [a]} 

– Q  simplifies to {Ord a} 
– example :: {Ord a} => a -> [a] -> Bool 

example z xs =  

   case xs of 

     []     -> False 

     (y:ys) -> y > z || (y==z && ys ==[z]) 



Detecting Errors 

• Errors are detected when predicates are 
known not to hold: 

Prelude> ‘a’ + 1 

 No instance for (Num Char) 

      arising from a use of `+' at <interactive>:1:0-6 

    Possible fix: add an instance declaration for (Num Char) 

    In the expression: 'a' + 1 

    In the definition of `it': it = 'a' + 1 

Prelude> (\x -> x) 

 No instance for (Show (t -> t)) 

      arising from a use of `print' at <interactive>:1:0-4 

    Possible fix: add an instance declaration for (Show (t -> t))

    In the expression: print it 

    In a stmt of a 'do' expression: print it 



More Type Classes: Constructors 

• Map function useful on many Haskell types 

 

 

 

 

 

• Historical evidence 
– Lots of map functions in Lisp, Scheme systems 

– Categories for the Working Mathematician –  

     “functors are everywhere” 

mapList:: (a -> b) -> [a] -> [b] 

mapList f  [] = [] 

mapList f (x:xs) = f x : mapList f xs 

 

result = mapList (\x->x+1) [1,2,4] 



Constructor Classes 

• More examples of map function 

Data Tree a = Leaf a | Node(Tree a, Tree a) 

    deriving Show 

 

mapTree :: (a -> b) -> Tree a -> Tree b 

mapTree f (Leaf x) = Leaf (f x) 

mapTree f (Node(l,r)) = Node (mapTree f l, mapTree f r) 

 

t1 = Node(Node(Leaf 3, Leaf 4), Leaf 5) 

result = mapTree (\x->x+1) t1 



Constructor Classes 

• More examples of map function 

 Data Opt a = Some a | None 

 deriving Show 

 

mapOpt :: (a -> b) -> Opt a -> Opt b 

mapOpt f None = None 

mapOpt f (Some x) = Some (f x) 

 

o1 = Some 10 

result = mapOpt (\x->x+1) o1 



Constructor Classes 

• All map functions share the same structure 

 

 

• They can all be written as: 

 
– where g is: 

    [-] for lists, Tree for trees, and Opt for options 

• Note that g is a function from types to types   

    It is a called a type constructor 

mapList :: (a -> b) -> [a] -> [b] 

mapTree :: (a -> b) -> Tree a -> Tree b 

mapOpt  :: (a -> b) -> Opt a -> Opt b 

map:: (a -> b) -> g a -> g b 



Constructor Classes 

• Capture this pattern in a constructor class,  

     

 

     A type class where the predicate is over  

     type constructors 

 

 

class HasMap g where 

  map :: (a -> b) -> g a -> g b 



Constructor Classes 
class HasMap f where 

  map :: (a -> b) -> f a -> f b 

 

instance HasMap [] where 

  map f [] = [] 

  map f (x:xs) = f x : map f xs 

 

instance HasMap Tree where 

  map f (Leaf x) = Leaf (f x) 

  map f (Node(t1,t2)) = Node(map f t1, map f t2) 

 

instance HasMap Opt where 

  map f (Some s) = Some (f s) 

  map f None = None 



Constructor Classes 

• Or by reusing the definitions mapList, mapTree, and mapOpt: 

class HasMap f where 

  map :: (a -> b) -> f a -> f b 

 

instance HasMap [] where 

  map = mapList 

 

instance HasMap Tree where 

  map = mapTree 

 

instance HasMap Opt where 

  map = mapOpt 



Constructor Classes 

• We can then use the overloaded symbol map to map over 
all three kinds of data structures: 
 
 
 
 
 
 
 
 

• The HasMap constructor class is part of the standard 
Prelude for Haskell, in which it is called Functor 

*Main> map (\x->x+1) [1,2,3] 

[2,3,4] 

it :: [Integer] 

*Main> map (\x->x+1) (Node(Leaf 1, Leaf 2)) 

Node (Leaf 2,Leaf 3) 

it :: Tree Integer 

*Main> map (\x->x+1) (Some 1) 

Some 2 

it :: Opt Integer 



Type classes /= OOP 

• Dictionaries and method suites are similar 
– In OOP, a value carries a method suite. 
– With type classes, the dictionary travels separately 

• Method resolution is static for type classes, dynamic 
for objects. 

• Dictionary selection can depend on result type 
     fromInteger :: Num a => Integer -> a 

• Based on polymorphism, not subtyping. 
• Old types can be made instances of new type classes 

but objects can’t retroactively implement interfaces or 
inherit from super classes. 



Peyton Jones’ take on type classes over time 

Type classes: the most unusual feature of Haskell type system 

  

1987 1989 1993 1997 

Implementation begins 

Despair Hack, 

hack, 

hack  

Hey, what’s 

the big 

deal? 

Incomprehension 

Wild enthusiasm 



Type-class fertility 

Wadler/ 

Blott type 

classes 

(1989) 

Multi-

parameter 

type classes 

(1991) Functional 

dependencies 

(2000) 

Constructor 

Classes (1995) 

Associated 

types (2005) 

Implicit parameters 

(2000) 

Generic 

programming 

Testing 

Extensible 

records (1996) Computation 

at the type 

level 

“newtype 

deriving” 

Derivable 

type classes 

Overlapping 

instances 

Variations 

Applications 



Type classes summary 

• More flexible than Haskell designers first realized  

  Automatic, type-driven generation of executable 
“evidence,” i.e., dictionaries 

• Many interesting generalizations 

   still being explored heavily in research community 

• Variants have been adopted 

   Isabel, Clean, Mercury, Hal, Escher,…  

   Who knows where they might appear in the future? 




