Type Classes

Slides modified from those of J. Mitchell, K. Fisher and S. P. Peyton Jones

Reading: "Concepts in Programming Languages", Revised Chapter 7 - handout on Web!!

Polymorphism vs Overloading

- Parametric polymorphism
 - Single algorithm may be given many types
 - Type variable may be replaced by any type
 - $\text{ if } f::t \rightarrow t \text{ then } f::Int \rightarrow Int, f::Bool \rightarrow Bool, ...$
- Overloading
 - A single symbol may refer to more than one algorithm.
 - Each algorithm may have different type.
 - Choice of algorithm determined by type context.
 - + has types Int \rightarrow Int \rightarrow Int and Float \rightarrow Float \rightarrow Float, but not t \rightarrow t for arbitrary t.

Why Overloading?

- Many useful functions are not parametric
- Can list membership work for any type?

member :: [w] -> w -> Bool

- No! Only for types w for that support equality.

• Can list sorting work for any type?

sort :: [w] -> [w]

- No! Only for types w that support ordering.

Why Overloading?

- Many useful functions are not parametric.
- Can serialize work for any type?

serialize:: w -> String

- No! Only for types w that support serialization.

• Can sumOfSquares work for any type?

sumOfSquares:: [w] -> w

No! Only for types that support numeric operations.

Overloading Arithmetic, Take 1

 Allow functions containing overloaded symbols to define multiple functions:

```
square x = x * x -- legal
-- Defines two versions:
-- Int -> Int and Float -> Float
```

• But consider:

```
squares (x,y,z) =
  (square x, square y, square z)
-- There are 8 possible versions!
```

• This approach has not been widely used because of exponential growth in number of versions.

Overloading Arithmetic, Take 2

 Basic operations such as + and * can be overloaded, but not functions defined from them

3 * 3	legal
3.14 * 3.14	legal
square $x = x * x$	Int -> Int
square 3	legal
square 3.14	illegal

- Standard ML uses this approach.
- Not satisfactory: Programmer cannot define functions that implementation might support

Overloading Equality, Take 1

 Equality defined only for types that admit equality: types not containing function or abstract types.

3 * 3 == 9	legal
`a' == `b'	legal
$x \rightarrow x = y \rightarrow y+1$	illegal

- Overload equality like arithmetic ops + and * in SML.
- But then we can't define functions using '==':

member [] y = False	
member $(x:xs)$ y = $(x=y)$) member xs y
member [1,2,3] 3	ok if default is Int
member "Haskell" 'k'	illegal

• Approach adopted in first version of SML.

Overloading Equality, Take 2

• Make type of equality fully polymorphic

(==) :: a -> a -> Bool

• Type of list membership function

member :: [a] -> a -> Bool

- Miranda used this approach.
 - Equality applied to a function yields a runtime error
 - Equality applied to an abstract type compares the underlying representation, which violates abstraction principles

Only provides overloading for ==

Overloading Equality, Take 3

• Make equality polymorphic in a limited way:

(==) :: a(==) -> a(==) -> Bool

where a(==) is type variable restricted to types with equality

• Now we can type the member function:

member	:: a(==) ->	> [a(==)] -> Bool
member	4	[2,3] :: Bool
member	`c′	[`a', `b', `c'] :: Bool
member	(\y->y *2)	$[x \rightarrow x, x \rightarrow x + 2] type error$

 Approach used in SML today, where the type a(==) is called an "eqtype variable" and is written ``a.

Type Classes

- Type classes solve these problems
 - Provide concise types to describe overloaded functions, so no exponential blow-up
 - Allow users to define functions using overloaded operations, eg, square, squares, and member
 - Allow users to declare new collections of overloaded functions: equality and arithmetic operators are not privileged built-ins
 - Generalize ML's eqtypes to arbitrary types
 - Fit within type inference framework

Intuition

• A function to sort lists can be passed a comparison operator as an argument:

This allows the function to be parametric

• We can built on this idea ...

Intuition (continued)

• Consider the "overloaded" parabola function

parabola x = (x * x) + x

• We can rewrite the function to take the operators it contains as an argument

parabola' (plus, times) x = plus (times x x) x

- The extra parameter is a "dictionary" that provides implementations for the overloaded ops.
- We have to rewrite all calls to pass appropriate implementations for plus and times:

```
y = parabola'(intPlus,intTimes) 10
z = parabola'(floatPlus, floatTimes) 3.14
```

Systematic programming style

```
-- Dictionary type
data MathDict a = MkMathDict (a->a->a) (a->a->a)
```

```
-- Accessor functions
get_plus :: MathDict a -> (a->a->a)
get plus (MkMathDict p t) = p
```

Type class declarations will generate Dictionary type and selector functions

```
get_times :: MathDict a -> (a->a->a)
get times (MkMathDict p t) = t
```

Systematic programming style

Type class instance declarations produce instances of the Dictionary

```
-- Dictionary type
data MathDict a = MkMathDict (a->a->a) (a->a->a)
-- Dictionary construction
intDict = MkMathDict intPlus intTimes
floatDict = MkMathDict floatPlus floatTimes
-- Passing dictionaries
y = parabola intDict 10
z = parabola floatDict 3.14
```

Compiler will add a dictionary parameter and rewrite the body as necessary

Type Class Design Overview

- Type class declarations
 - Define a set of operations, give the set a name
 - Example: Eq a type class
 - operations == and \= with type a -> a -> Bool
- Type class instance declarations
 - Specify the implementations for a particular type
 - For Int instance, == is defined to be integer equality
- Qualified types
 - Concisely express the operations required on otherwise polymorphic type

member:: Eq w \Rightarrow w \Rightarrow [w] \Rightarrow Bool

Member :: Eq w \Rightarrow w \Rightarrow [w] \Rightarrow Bool

• If a function works for every type with particular properties, the type of the function says just that:

sort	:: Ord a => [a] -> [a]
serialise	:: Show a => a -> String
square	:: Num n \Rightarrow n \Rightarrow n
squares	::(Num t, Num t1, Num t2) =>
	(t, t1, t2) -> (t, t1, t2)

Otherwise, it must work for any type whatsoever

```
reverse :: [a] -> [a]
filter :: (a -> Bool) -> [a] -> [a]
```

Works for any type 'n' that supports the Num operations

Type Classes

FORGET all you know about OO classes!

square :: Num n => n -> n square x = x*x

class Num a where (+) :: a -> a -> a (*) :: a -> a -> a negate :: a -> a ...etc...

instance Num Int where a + b = intPlus a b a * b = intTimes a b negate a = intNeg a ...etc... The class declaration says what the Num operations are

An instance declaration for a type T says how the Num operations are implemented on T's

intPlus :: Int -> Int -> Int intTimes :: Int -> Int -> Int etc, defined as primitives

Compiling Overloaded Functions

When you write this...

square :: Num n => n \rightarrow n square x = x*x ...the compiler generates this

square	:: Num	n ->	n	-> n
square	d x =	(*) d	x	x

The "Num n =>" turns into an extra value argument to the function. It is a value of data type Num n and it represents a dictionary of the required operations.

> A value of type (Num n) is a dictionary of the Num operations for type n

Compiling Type Classes

When you	write this
----------	------------

square	:: Num n \Rightarrow n \Rightarrow n
square	$\mathbf{x} = \mathbf{x}^* \mathbf{x}$

class Num	ı n	wł	ere	3		
(+)	::	n	->	n	->	n
(*)	::	n	->	n	->	n
negate	::	n	->	n		
etc.	• •					

The class decl translates to: A data type decl for Num A selector function for each class operation ...the compiler generates this

square :: Num n \rightarrow n \rightarrow n square d x = (*) d x x

A value of type (Num n) is a dictionary of the Num operations for type n

Compiling Instance Declarations

When you write this...

square	:: Num n => n \rightarrow n	
square	$\mathbf{x} = \mathbf{x}^* \mathbf{x}$	

...the compiler generates this

square	:: Num	n ->	n	-> n
square	d x =	(*) d	x	x

instance	Num	Int where
a + b	=	intPlus a b
a * b	=	intTimes a b
negate	a =	intNeg a
etc.	• • •	

An instance decl for type T translates to a value declaration for the Num dictionary for T

A value of type (Num n) is a dictionary of the Num operations for type n

Implementation Summary

- The compiler translates each function that uses an overloaded symbol into a function with an extra parameter: the dictionary.
- References to overloaded symbols are rewritten by the compiler to lookup the symbol in the dictionary.
- The compiler converts each type class declaration into a dictionary type declaration and a set of selector functions.
- The compiler converts each instance declaration into a dictionary of the appropriate type.
- The compiler rewrites calls to overloaded functions to pass a dictionary. It uses the static, qualified type of the function to select the dictionary.

Functions with Multiple Dictionaries

squares :: (Num a, Num b, Num c) => (a, b, c) -> (a, b, c) squares(x,y,z) = (square x, square y, square z)

Note the concise type for the squares function!

squares :: (Num a, Num b, Num c) \rightarrow (a, b, c) \rightarrow (a, b, c) squares (da,db,dc) (x, y, z) = (square da x, sc ce db y, square dc z)

> Pass appropriate dictionary on to each square function.

Compositionality

 Overloaded functions can be defined from other overloaded functions:

sumSq :: Num n => n -> n -> n sumSq x y = square x + square y

> $sumSq :: Num n \rightarrow n \rightarrow n \rightarrow n$ sumSq d x y = (+) d (square d x)(square d y)

Extract addition operation from d

Pass on d to square

Compositionality

• Build compound instances from simpler ones:

```
class Eq a where
  (==) :: a -> a -> Bool
instance Eq Int where
 (==) = intEq -- intEq primitive equality
instance (Eq a, Eq b) \Rightarrow Eq(a,b)
  (u,v) == (x,y) = (u == x) \&\& (v == y)
instance Eq a \Rightarrow Eq [a] where
  (==) [] [] = True
  (==) (x:xs) (y:ys) = x==y && xs == ys
  (==) _ = False
```

Compound Translation

• Build compound instances from simpler ones.

```
class Eq a where
  (==) :: a -> a -> Bool
instance Eq a => Eq [a] where
  (==) [] [] = True
  (==) (x:xs) (y:ys) = x==y && xs == ys
  (==) _ _ _ = False
```

```
data Eq = MkEq (a->a->Bool) -- Dictionary type
(==) (MkEq eq) = eq -- Selector
dEqList :: Eq a -> Eq [a] -- List Dictionary
dEqList d = MkEq eql
where
eql [] [] = True
eql (x:xs) (y:ys) = (==) d x y && eql xs ys
eql = False
```

Many Type Classes

- Eq: equality
- Ord: comparison
- Num: numerical operations
- Show: convert to string
- Read: convert from string
- Testable, Arbitrary: testing.
- Enum: ops on sequentially ordered types
- Bounded: upper and lower values of a type
- Generic programming, reflection, monads, ...
- And many more.

Subclasses

• We could treat the Eq and Num type classes separately

memsq :: (Eq a, Num a) => a -> [a] -> Bool
memsq x xs = member (square x) xs

- But we expect any type supporting Num to also support Eq
- A subclass declaration expresses this relationship:

class Eq a => Num a where (+) :: a -> a -> a (*) :: a -> a -> a

• With that declaration, we can simplify the type of the function

```
memsq :: Num a => a -> [a] -> Bool
memsq x xs = member (square x) xs
```

Default Methods

• Type classes can define "default methods"

```
-- Minimal complete definition:
-- (==) or (/=)
class Eq a where
  (==) :: a -> a -> Bool
  x == y = not (x /= y)
  (/=) :: a -> a -> Bool
  x /= y = not (x == y)
```

Instance declarations can override default by providing a more specific definition.

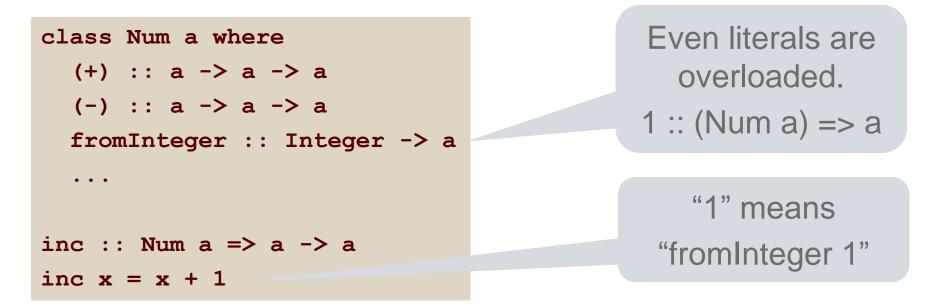
Deriving

• For Read, Show, Bounded, Enum, Eq, and Ord, the compiler can generate instance declarations automatically

```
data Color = Red | Green | Blue
  deriving (Show, Read, Eq, Ord)
Main> show Red
"Red"
Main> Red < Green
True
Main>let c :: Color = read "Red"
Main> c
Red
```

- Ad hoc : derivations apply only to types where derivation code works

Numeric Literals



Advantages:

- Numeric literals can be interpreted as values of any appropriate numeric type
- Example: 1 can be an Integer or a Float or a user-defined numeric type.

Example: Complex Numbers

• We can define a data type of complex numbers and make it an instance of **Num**.

```
class Num a where
 (+) :: a -> a -> a
 fromInteger :: Integer -> a
 ...
```

```
data Cpx a = Cpx a a
  deriving (Eq, Show)
```

. . .

```
instance Num a => Num (Cpx a) where
 (Cpx r1 i1) + (Cpx r2 i2) = Cpx (r1+r2) (i1+i2)
 fromInteger n = Cpx (fromInteger n) 0
```

Example: Complex Numbers

 And then we can use values of type Cpx in any context requiring a Num:

```
data Cpx a = Cpx a a

c1 = 1 :: Cpx Int

c2 = 2 :: Cpx Int

c3 = c1 + c2

parabola x = (x * x) + x

c4 = parabola c3

i1 = parabola 3
```

Completely Different Example

 Recall: QuickCheck is a Haskell library for randomly testing Boolean properties of code.

```
reverse [] = []
reverse (x:xs) = (reverse xs) ++ [x]
-- Write properties in Haskell
prop_RevRev :: [Int] -> Bool
prop_RevRev ls = reverse (reverse ls) == ls
```

```
Prelude Test.QuickCheck> quickCheck prop_RevRev
+++ OK, passed 100 tests
```

```
Prelude Test.QuickCheck> :t quickCheck
quickCheck :: Testable a => a -> IO ()
```

QuickCheck (II)

```
prop_RevRev :: [Int] -> Bool
```

```
quickCheck :: Testable a => a -> IO ()
class Testable a where
  test :: a -> RandSupply -> Bool
instance Testable Bool where
 test b r = b
class Arbitrary a where
  arby :: RandSupply -> a
instance (Arbitrary a, Testable b)
                   => Testable (a->b) where
  test f r = test (f (arby r1)) r2
                    where (r1, r2) = split r
```

split :: RandSupply -> (RandSupply, RandSupply)

QuickCheck (III)

```
prop_RevRev :: [Int]-> Bool
```

```
test prop_RevRev r
= test (prop_RevRev (arby r1)) r2
where (r1,r2) = split r
= prop_RevRev (arby r1)
```

QuickCheck (IV)

```
class Arbitrary a where
 arby :: RandSupply -> a
instance Arbitrary Int where
 arby r = randInt r
instance Arbitrary a
                                          Generate Nil value
           => Arbitrary [a] where
 arby r \mid even r1 = []
         | otherwise = arby r2 : arby r3
    where
      (r1,r') = split r
                                           Generate cons value
      (r2,r3) = split r'
split :: RandSupply -> (RandSupply, RandSupply)
randInt :: RandSupply -> Int
```

QuickCheck (V)

- QuickCheck uses type classes to auto-generate
 - random values
 - testing functions
 - based on the type of the function under test
- Not built into Haskell QuickCheck is a library!
- Plenty of wrinkles, especially
 - test data should satisfy preconditions
 - generating test data in sparse domains

QuickCheck: A Lightweight tool for random testing of Haskell Programs

Type Inference

- Type inference infers a qualified type Q => T
 - T is a Hindley Milner type, inferred as usual
 - Q is set of type class predicates, called a constraint
- Consider the example function:

```
example z xs =
    case xs of
    []    -> False
    (y:ys) -> y > z || (y==z && ys == [z])
```

Type T is a -> [a] -> Bool
Constraint Q is { Ord a, Eq a, Eq [a]}

Ord a because y>z Eq a because y==z Eq [a] because ys == [z]

Type Inference

- Constraint sets Q can be simplified:
 - Eliminate duplicates
 - {Eq a, Eq a} simplifies to {Eq a}
 - Use an instance declaration
 - If we have instance Eq a => Eq [a],
 - then {Eq a, Eq [a]} simplifies to {Eq a}
 - Use a class declaration
 - If we have class Eq a => Ord a where ...,
 - then {Ord a, Eq a} simplifies to {Ord a}
- Applying these rules,
 - {Ord a, Eq a, Eq[a]} simplifies to {Ord a}

Type Inference

• Putting it all together:

```
example z xs =
    case xs of
    []    -> False
    (y:ys) -> y > z || (y==z && ys ==[z])
```

- T = a -> [a] -> Bool
- $-Q = \{ Ord a, Eq a, Eq [a] \}$
- -Q simplifies to {Ord a}
- example :: {Ord a} => a -> [a] -> Bool

Detecting Errors

• Errors are detected when predicates are known not to hold:

```
Prelude> `a' + 1
No instance for (Num Char)
    arising from a use of `+' at <interactive>:1:0-6
    Possible fix: add an instance declaration for (Num Char)
    In the expression: 'a' + 1
    In the definition of `it': it = 'a' + 1
```

```
Prelude> (\x -> x)
No instance for (Show (t -> t))
arising from a use of `print' at <interactive>:1:0-4
Possible fix: add an instance declaration for (Show (t -> t
In the expression: print it
In a stmt of a 'do' expression: print it
```

More Type Classes: Constructors

• Map function useful on many Haskell types

```
mapList:: (a -> b) -> [a] -> [b]
mapList f [] = []
mapList f (x:xs) = f x : mapList f xs
result = mapList (\x->x+1) [1,2,4]
```

- Historical evidence
 - Lots of map functions in Lisp, Scheme systems
 - Categories for the Working Mathematician "functors are everywhere"

More examples of map function

```
Data Tree a = Leaf a | Node(Tree a, Tree a)
    deriving Show
mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f (Leaf x) = Leaf (f x)
mapTree f (Node(l,r)) = Node (mapTree f l, mapTree f r)
t1 = Node(Node(Leaf 3, Leaf 4), Leaf 5)
result = mapTree (\x->x+1) t1
```

More examples of map function

```
Data Opt a = Some a | None
deriving Show
mapOpt :: (a -> b) -> Opt a -> Opt b
mapOpt f None = None
mapOpt f (Some x) = Some (f x)
o1 = Some 10
result = mapOpt (\x->x+1) o1
```

All map functions share the same structure

mapList :: (a -> b) -> [a] -> [b]
mapTree :: (a -> b) -> Tree a -> Tree b
mapOpt :: (a -> b) -> Opt a -> Opt b

• They can all be written as:

map:: $(a \rightarrow b) \rightarrow g a \rightarrow g b$

– where g is:

[-] for lists, Tree for trees, and Opt for options

Note that g is a function from types to types
 It is a called a type constructor

• Capture this pattern in a constructor class,

class HasMap g where map :: (a -> b) -> g a -> g b

A type class where the predicate is over type constructors

```
class HasMap f where
  map :: (a \rightarrow b) \rightarrow f a \rightarrow f b
instance HasMap [] where
  map f [] = []
  map f (x:xs) = f x : map f xs
instance HasMap Tree where
  map f (Leaf x) = Leaf (f x)
  map f (Node(t1,t2)) = Node(map f t1, map f t2)
instance HasMap Opt where
  map f (Some s) = Some (f s)
 map f None = None
```

• Or by reusing the definitions mapList, mapTree, and mapOpt:

```
class HasMap f where
  map :: (a \rightarrow b) \rightarrow f a \rightarrow f b
instance HasMap [] where
  map = mapList
instance HasMap Tree where
  map = mapTree
instance HasMap Opt where
  map = mapOpt
```

• We can then use the overloaded symbol map to map over all three kinds of data structures:

```
*Main> map (\x->x+1) [1,2,3]
[2,3,4]
it :: [Integer]
*Main> map (\x->x+1) (Node(Leaf 1, Leaf 2))
Node (Leaf 2,Leaf 3)
it :: Tree Integer
*Main> map (\x->x+1) (Some 1)
Some 2
it :: Opt Integer
```

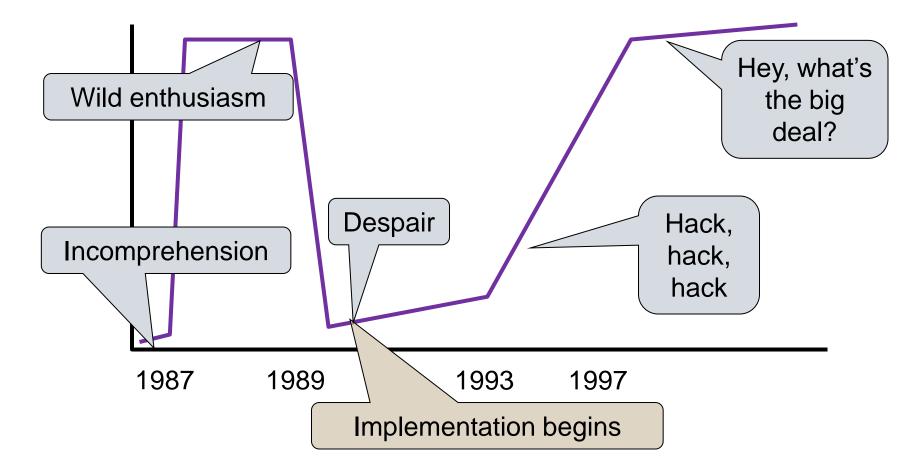
 The HasMap constructor class is part of the standard Prelude for Haskell, in which it is called *Functor*

Type classes /= OOP

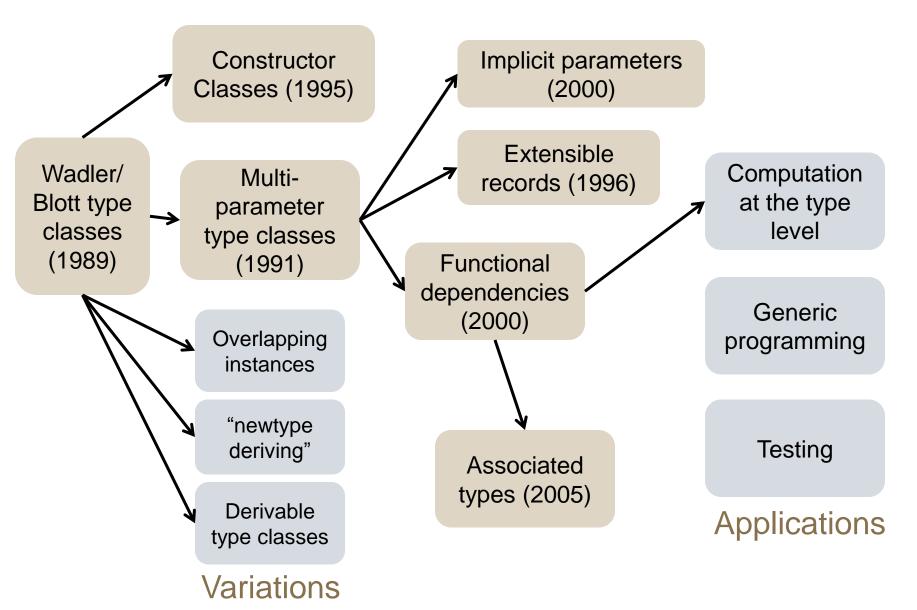
- Dictionaries and method suites are similar
 - In OOP, a value carries a method suite.
 - With type classes, the dictionary travels separately
- Method resolution is static for type classes, dynamic for objects.
- Dictionary selection can depend on result type fromInteger :: Num a => Integer -> a
- Based on polymorphism, not subtyping.
- Old types can be made instances of new type classes but objects can't retroactively implement interfaces or inherit from super classes.

Peyton Jones' take on type classes over time

Type classes: the most unusual feature of Haskell type system



Type-class fertility



Type classes summary

- More flexible than Haskell designers first realized Automatic, type-driven generation of executable "evidence," i.e., dictionaries
- Many interesting generalizations still being explored heavily in research community
- Variants have been adopted

Isabel, Clean, Mercury, Hal, Escher,...

Who knows where they might appear in the future?