
Type Classes

Slides modified from those of J.
Mitchell, K. Fisher and S. P. Peyton

Jones

Reading: “Concepts in Programming Languages”,

Revised Chapter 7 - handout on Web!!

CS 242 2012

Polymorphism vs Overloading

• Parametric polymorphism
– Single algorithm may be given many types
– Type variable may be replaced by any type
– if f::tt then f::IntInt, f::BoolBool, ...

• Overloading
– A single symbol may refer to more than one

algorithm.
– Each algorithm may have different type.
– Choice of algorithm determined by type context.
– + has types Int  Int  Int and Float  Float 

Float, but not ttt for arbitrary t.

Why Overloading?

• Many useful functions are not parametric

• Can list membership work for any type?

– No! Only for types w for that support equality.

• Can list sorting work for any type?

– No! Only for types w that support ordering.

member :: [w] -> w -> Bool

sort :: [w] -> [w]

Why Overloading?

• Many useful functions are not parametric.

• Can serialize work for any type?

– No! Only for types w that support serialization.

• Can sumOfSquares work for any type?

– No! Only for types that support numeric operations.

serialize:: w -> String

sumOfSquares:: [w] -> w

Overloading Arithmetic, Take 1

• Allow functions containing overloaded symbols to define
multiple functions:

• But consider:

• This approach has not been widely used because of
exponential growth in number of versions.

square x = x * x -- legal

-- Defines two versions:

-- Int -> Int and Float -> Float

squares (x,y,z) =

 (square x, square y, square z)

-- There are 8 possible versions!

Overloading Arithmetic, Take 2

• Basic operations such as + and * can be overloaded,
but not functions defined from them

• Standard ML uses this approach.

• Not satisfactory: Programmer cannot define
functions that implementation might support

3 * 3 -- legal

3.14 * 3.14 -- legal

square x = x * x -- Int -> Int

square 3 -- legal

square 3.14 -- illegal

Overloading Equality, Take 1

• Equality defined only for types that admit equality:
types not containing function or abstract types.

• Overload equality like arithmetic ops + and * in SML.
• But then we can’t define functions using ‘==‘:

• Approach adopted in first version of SML.

3 * 3 == 9 -- legal

‘a’ == ‘b’ -- legal

\x->x == \y->y+1 -- illegal

member [] y = False

member (x:xs) y = (x==y) || member xs y

member [1,2,3] 3 -- ok if default is Int

member “Haskell” ‘k’ -- illegal

Overloading Equality, Take 2

• Make type of equality fully polymorphic

• Type of list membership function

• Miranda used this approach.

– Equality applied to a function yields a runtime error

– Equality applied to an abstract type compares the
underlying representation, which violates abstraction
principles

(==) :: a -> a -> Bool

member :: [a] -> a -> Bool

Overloading Equality, Take 3

• Make equality polymorphic in a limited way:

where a(==) is type variable restricted to types with equality

• Now we can type the member function:

• Approach used in SML today, where the type a(==) is
called an “eqtype variable” and is written ``a.

(==) :: a(==) -> a(==) -> Bool

member :: a(==) -> [a(==)] -> Bool

member 4 [2,3] :: Bool

member ‘c’ [‘a’, ‘b’, ‘c’] :: Bool

member (\y->y *2) [\x->x, \x->x + 2] -- type error

Only provides overloading for ==

Type Classes

• Type classes solve these problems
– Provide concise types to describe overloaded

functions, so no exponential blow-up

– Allow users to define functions using overloaded
operations, eg, square, squares, and member

– Allow users to declare new collections of
overloaded functions: equality and arithmetic
operators are not privileged built-ins

– Generalize ML’s eqtypes to arbitrary types

– Fit within type inference framework

Intuition

• A function to sort lists can be passed a
comparison operator as an argument:

– This allows the function to be parametric

• We can built on this idea …

qsort:: (a -> a -> Bool) -> [a] -> [a]

qsort cmp [] = []

qsort cmp (x:xs) = qsort cmp (filter (cmp x) xs)

 ++ [x] ++

 qsort cmp (filter (not.cmp x) xs)

Intuition (continued)

• Consider the “overloaded” parabola function

• We can rewrite the function to take the
operators it contains as an argument

– The extra parameter is a “dictionary” that

provides implementations for the overloaded ops.

– We have to rewrite all calls to pass appropriate
implementations for plus and times:

parabola x = (x * x) + x

parabola’ (plus, times) x = plus (times x x) x

y = parabola’(intPlus,intTimes) 10

z = parabola’(floatPlus, floatTimes) 3.14

Systematic programming style

-- Dictionary type

data MathDict a = MkMathDict (a->a->a) (a->a->a)

-- Accessor functions

get_plus :: MathDict a -> (a->a->a)

get_plus (MkMathDict p t) = p

get_times :: MathDict a -> (a->a->a)

get_times (MkMathDict p t) = t

-- “Dictionary-passing style”

parabola :: MathDict a -> a -> a

parabola dict x = let plus = get_plus dict

 times = get_times dict

 in plus (times x x) x

Type class declarations

will generate Dictionary

type and selector

functions

Systematic programming style

-- Dictionary type

data MathDict a = MkMathDict (a->a->a) (a->a->a)

-- Dictionary construction

intDict = MkMathDict intPlus intTimes

floatDict = MkMathDict floatPlus floatTimes

-- Passing dictionaries

y = parabola intDict 10

z = parabola floatDict 3.14

Type class instance declarations

produce instances of the Dictionary

Compiler will add a dictionary

parameter and rewrite the body as

necessary

Type Class Design Overview

• Type class declarations
– Define a set of operations, give the set a name

– Example: Eq a type class
• operations == and \= with type a -> a -> Bool

• Type class instance declarations
– Specify the implementations for a particular type

– For Int instance, == is defined to be integer equality

• Qualified types
– Concisely express the operations required on

otherwise polymorphic type

 member:: Eq w => w -> [w] -> Bool

• If a function works for every type with particular
properties, the type of the function says just that:

• Otherwise, it must work for any type whatsoever

Qualified Types

Member :: Eq w => w -> [w] -> Bool

sort :: Ord a => [a] -> [a]

serialise :: Show a => a -> String

square :: Num n => n -> n

squares ::(Num t, Num t1, Num t2) =>

 (t, t1, t2) -> (t, t1, t2)

“for all types w that

support the Eq

operations”

reverse :: [a] -> [a]

filter :: (a -> Bool) -> [a] -> [a]

Type Classes

square :: Num n => n -> n

square x = x*x

class Num a where

 (+) :: a -> a -> a

 (*) :: a -> a -> a

 negate :: a -> a

 ...etc...

FORGET all

you know

about OO

classes!

The class declaration

says what the Num

operations are

Works for any type

‘n’ that supports the

Num operations

instance Num Int where

 a + b = intPlus a b

 a * b = intTimes a b

 negate a = intNeg a

 ...etc...

An instance

declaration for a type

T says how the Num

operations are

implemented on T’s

intPlus :: Int -> Int -> Int

intTimes :: Int -> Int -> Int

etc, defined as primitives

Compiling Overloaded Functions

square :: Num n => n -> n

square x = x*x

square :: Num n -> n -> n

square d x = (*) d x x

The “Num n =>” turns into an extra value argument to

the function. It is a value of data type Num n and it

represents a dictionary of the required operations.

When you write this... ...the compiler generates this

A value of type (Num n) is a dictionary of

the Num operations for type n

Compiling Type Classes

square :: Num n => n -> n

square x = x*x

class Num n where

 (+) :: n -> n -> n

 (*) :: n -> n -> n

 negate :: n -> n

 ...etc...

The class decl translates to:

A data type decl for Num

A selector function for each

class operation

square :: Num n -> n -> n

square d x = (*) d x x

data Num n

 = MkNum (n -> n -> n)

 (n -> n -> n)

 (n -> n)

 ...etc...

...

(*) :: Num n -> n -> n -> n

(*) (MkNum _ m _ ...) = m

When you write this... ...the compiler generates this

A value of type (Num n) is a dictionary of

the Num operations for type n

dNumInt :: Num Int

dNumInt = MkNum intPlus

 intTimes

 intNeg

 ...

Compiling Instance Declarations

square :: Num n => n -> n

square x = x*x

square :: Num n -> n -> n

square d x = (*) d x x

instance Num Int where

 a + b = intPlus a b

 a * b = intTimes a b

 negate a = intNeg a

 ...etc...

When you write this... ...the compiler generates this

A value of type (Num n) is a dictionary of

the Num operations for type n

An instance decl for type T

translates to a value

declaration for the Num

dictionary for T

Implementation Summary

• The compiler translates each function that uses an
overloaded symbol into a function with an extra parameter:
the dictionary.

• References to overloaded symbols are rewritten by the
compiler to lookup the symbol in the dictionary.

• The compiler converts each type class declaration into a
dictionary type declaration and a set of selector functions.

• The compiler converts each instance declaration into a
dictionary of the appropriate type.

• The compiler rewrites calls to overloaded functions to pass
a dictionary. It uses the static, qualified type of the
function to select the dictionary.

Functions with Multiple Dictionaries

squares :: (Num a, Num b, Num c) => (a, b, c) -> (a, b, c)

squares(x,y,z) = (square x, square y, square z)

squares :: (Num a, Num b, Num c) -> (a, b, c) -> (a, b, c)

squares (da,db,dc) (x, y, z) =

 (square da x, square db y, square dc z)

Pass appropriate

dictionary on to each

square function.

Note the concise type for

the squares function!

Compositionality

sumSq :: Num n => n -> n -> n

sumSq x y = square x + square y

sumSq :: Num n -> n -> n -> n

sumSq d x y = (+) d (square d x)

 (square d y)

Pass on d to square
Extract addition

operation from d

• Overloaded functions can be defined from
other overloaded functions:

Compositionality

class Eq a where

 (==) :: a -> a -> Bool

instance Eq Int where

 (==) = intEq -- intEq primitive equality

instance (Eq a, Eq b) => Eq(a,b)

 (u,v) == (x,y) = (u == x) && (v == y)

instance Eq a => Eq [a] where

 (==) [] [] = True

 (==) (x:xs) (y:ys) = x==y && xs == ys

 (==) _ _ = False

• Build compound instances from simpler ones:

Compound Translation

class Eq a where

 (==) :: a -> a -> Bool

instance Eq a => Eq [a] where

 (==) [] [] = True

 (==) (x:xs) (y:ys) = x==y && xs == ys

 (==) _ _ = False

data Eq = MkEq (a->a->Bool) -- Dictionary type

(==) (MkEq eq) = eq -- Selector

dEqList :: Eq a -> Eq [a] -- List Dictionary

dEqList d = MkEq eql

 where

 eql [] [] = True

 eql (x:xs) (y:ys) = (==) d x y && eql xs ys

 eql _ _ = False

• Build compound instances from simpler ones.

Many Type Classes

• Eq: equality
• Ord: comparison
• Num: numerical operations
• Show: convert to string
• Read: convert from string
• Testable, Arbitrary: testing.
• Enum: ops on sequentially ordered types
• Bounded: upper and lower values of a type
• Generic programming, reflection, monads, …
• And many more.

Subclasses

• We could treat the Eq and Num type classes separately

– But we expect any type supporting Num to also support Eq

• A subclass declaration expresses this relationship:

• With that declaration, we can simplify the type of the function

memsq :: (Eq a, Num a) => a -> [a] -> Bool

memsq x xs = member (square x) xs

class Eq a => Num a where

 (+) :: a -> a -> a

 (*) :: a -> a -> a

memsq :: Num a => a -> [a] -> Bool

memsq x xs = member (square x) xs

Default Methods

• Type classes can define “default methods”

• Instance declarations can override default by
providing a more specific definition.

-- Minimal complete definition:

-- (==) or (/=)

class Eq a where

 (==) :: a -> a -> Bool

 x == y = not (x /= y)

 (/=) :: a -> a -> Bool

 x /= y = not (x == y)

Deriving

• For Read, Show, Bounded, Enum, Eq, and Ord, the compiler
can generate instance declarations automatically

– Ad hoc : derivations apply only to types where derivation code works

data Color = Red | Green | Blue

 deriving (Show, Read, Eq, Ord)

Main> show Red

“Red”

Main> Red < Green

True

Main>let c :: Color = read “Red”

Main> c

Red

Numeric Literals

class Num a where

 (+) :: a -> a -> a

 (-) :: a -> a -> a

 fromInteger :: Integer -> a

 ...

inc :: Num a => a -> a

inc x = x + 1

Even literals are

overloaded.

1 :: (Num a) => a

“1” means

“fromInteger 1”

Advantages:

- Numeric literals can be interpreted as values of

any appropriate numeric type

- Example: 1 can be an Integer or a Float or a

user-defined numeric type.

Example: Complex Numbers

• We can define a data type of complex
numbers and make it an instance of Num.

data Cpx a = Cpx a a

 deriving (Eq, Show)

instance Num a => Num (Cpx a) where

 (Cpx r1 i1) + (Cpx r2 i2) = Cpx (r1+r2) (i1+i2)

 fromInteger n = Cpx (fromInteger n) 0

 ...

class Num a where

 (+) :: a -> a -> a

 fromInteger :: Integer -> a

 ...

Example: Complex Numbers

• And then we can use values of type Cpx in
any context requiring a Num:

data Cpx a = Cpx a a

c1 = 1 :: Cpx Int

c2 = 2 :: Cpx Int

c3 = c1 + c2

parabola x = (x * x) + x

c4 = parabola c3

i1 = parabola 3

Completely Different Example

• Recall: QuickCheck is a Haskell library for
randomly testing Boolean properties of code.

reverse [] = []

reverse (x:xs) = (reverse xs) ++ [x]

-- Write properties in Haskell

prop_RevRev :: [Int] -> Bool

prop_RevRev ls = reverse (reverse ls) == ls

Prelude Test.QuickCheck> quickCheck prop_RevRev

+++ OK, passed 100 tests

Prelude Test.QuickCheck> :t quickCheck

quickCheck :: Testable a => a -> IO ()

quickCheck :: Testable a => a -> IO ()

class Testable a where

 test :: a -> RandSupply -> Bool

instance Testable Bool where

 test b r = b

class Arbitrary a where

 arby :: RandSupply -> a

instance (Arbitrary a, Testable b)

 => Testable (a->b) where

 test f r = test (f (arby r1)) r2

 where (r1,r2) = split r

split :: RandSupply -> (RandSupply, RandSupply)

QuickCheck (II)
prop_RevRev :: [Int] -> Bool

QuickCheck (III)

test prop_RevRev r

= test (prop_RevRev (arby r1)) r2

 where (r1,r2) = split r

= prop_RevRev (arby r1)

prop_RevRev :: [Int]-> Bool

class Testable a where

 test :: a -> RandSupply -> Bool

instance Testable Bool where

 test b r = b

instance (Arbitrary a, Testable b)

 => Testable (a->b) where

 test f r = test (f (arby r1)) r2

 where (r1,r2) = split r

Using instance for Bool

Using instance for (->)

QuickCheck (IV)
class Arbitrary a where

 arby :: RandSupply -> a

instance Arbitrary Int where

 arby r = randInt r

instance Arbitrary a

 => Arbitrary [a] where

 arby r | even r1 = []

 | otherwise = arby r2 : arby r3

 where

 (r1,r’) = split r

 (r2,r3) = split r’

split :: RandSupply -> (RandSupply, RandSupply)

randInt :: RandSupply -> Int

Generate cons value

Generate Nil value

QuickCheck (V)

• QuickCheck uses type classes to auto-generate

– random values

– testing functions

 based on the type of the function under test

• Not built into Haskell – QuickCheck is a library!

• Plenty of wrinkles, especially

– test data should satisfy preconditions

– generating test data in sparse domains

QuickCheck: A Lightweight tool for random testing of Haskell Programs

http://portal.acm.org/citation.cfm?id=351266
http://portal.acm.org/citation.cfm?id=351266

Type Inference

• Type inference infers a qualified type Q => T
– T is a Hindley Milner type, inferred as usual

– Q is set of type class predicates, called a constraint

• Consider the example function:

– Type T is a -> [a] -> Bool

– Constraint Q is { Ord a, Eq a, Eq [a]}

example z xs =

 case xs of

 [] -> False

 (y:ys) -> y > z || (y==z && ys == [z])

Ord a because y>z

Eq a because y==z

Eq [a] because ys == [z]

Type Inference

• Constraint sets Q can be simplified:
– Eliminate duplicates

• {Eq a, Eq a} simplifies to {Eq a}

– Use an instance declaration
• If we have instance Eq a => Eq [a],
• then {Eq a, Eq [a]} simplifies to {Eq a}

– Use a class declaration
• If we have class Eq a => Ord a where ...,
• then {Ord a, Eq a} simplifies to {Ord a}

• Applying these rules,
– {Ord a, Eq a, Eq[a]} simplifies to {Ord a}

Type Inference

• Putting it all together:

– T = a -> [a] -> Bool

– Q = {Ord a, Eq a, Eq [a]}

– Q simplifies to {Ord a}
– example :: {Ord a} => a -> [a] -> Bool

example z xs =

 case xs of

 [] -> False

 (y:ys) -> y > z || (y==z && ys ==[z])

Detecting Errors

• Errors are detected when predicates are
known not to hold:

Prelude> ‘a’ + 1

 No instance for (Num Char)

 arising from a use of `+' at <interactive>:1:0-6

 Possible fix: add an instance declaration for (Num Char)

 In the expression: 'a' + 1

 In the definition of `it': it = 'a' + 1

Prelude> (\x -> x)

 No instance for (Show (t -> t))

 arising from a use of `print' at <interactive>:1:0-4

 Possible fix: add an instance declaration for (Show (t -> t))

 In the expression: print it

 In a stmt of a 'do' expression: print it

More Type Classes: Constructors

• Map function useful on many Haskell types

• Historical evidence
– Lots of map functions in Lisp, Scheme systems

– Categories for the Working Mathematician –

 “functors are everywhere”

mapList:: (a -> b) -> [a] -> [b]

mapList f [] = []

mapList f (x:xs) = f x : mapList f xs

result = mapList (\x->x+1) [1,2,4]

Constructor Classes

• More examples of map function

Data Tree a = Leaf a | Node(Tree a, Tree a)

 deriving Show

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree f (Leaf x) = Leaf (f x)

mapTree f (Node(l,r)) = Node (mapTree f l, mapTree f r)

t1 = Node(Node(Leaf 3, Leaf 4), Leaf 5)

result = mapTree (\x->x+1) t1

Constructor Classes

• More examples of map function

 Data Opt a = Some a | None

 deriving Show

mapOpt :: (a -> b) -> Opt a -> Opt b

mapOpt f None = None

mapOpt f (Some x) = Some (f x)

o1 = Some 10

result = mapOpt (\x->x+1) o1

Constructor Classes

• All map functions share the same structure

• They can all be written as:

– where g is:

 [-] for lists, Tree for trees, and Opt for options

• Note that g is a function from types to types

 It is a called a type constructor

mapList :: (a -> b) -> [a] -> [b]

mapTree :: (a -> b) -> Tree a -> Tree b

mapOpt :: (a -> b) -> Opt a -> Opt b

map:: (a -> b) -> g a -> g b

Constructor Classes

• Capture this pattern in a constructor class,

 A type class where the predicate is over

 type constructors

class HasMap g where

 map :: (a -> b) -> g a -> g b

Constructor Classes
class HasMap f where

 map :: (a -> b) -> f a -> f b

instance HasMap [] where

 map f [] = []

 map f (x:xs) = f x : map f xs

instance HasMap Tree where

 map f (Leaf x) = Leaf (f x)

 map f (Node(t1,t2)) = Node(map f t1, map f t2)

instance HasMap Opt where

 map f (Some s) = Some (f s)

 map f None = None

Constructor Classes

• Or by reusing the definitions mapList, mapTree, and mapOpt:

class HasMap f where

 map :: (a -> b) -> f a -> f b

instance HasMap [] where

 map = mapList

instance HasMap Tree where

 map = mapTree

instance HasMap Opt where

 map = mapOpt

Constructor Classes

• We can then use the overloaded symbol map to map over
all three kinds of data structures:

• The HasMap constructor class is part of the standard
Prelude for Haskell, in which it is called Functor

*Main> map (\x->x+1) [1,2,3]

[2,3,4]

it :: [Integer]

*Main> map (\x->x+1) (Node(Leaf 1, Leaf 2))

Node (Leaf 2,Leaf 3)

it :: Tree Integer

*Main> map (\x->x+1) (Some 1)

Some 2

it :: Opt Integer

Type classes /= OOP

• Dictionaries and method suites are similar
– In OOP, a value carries a method suite.
– With type classes, the dictionary travels separately

• Method resolution is static for type classes, dynamic
for objects.

• Dictionary selection can depend on result type
 fromInteger :: Num a => Integer -> a

• Based on polymorphism, not subtyping.
• Old types can be made instances of new type classes

but objects can’t retroactively implement interfaces or
inherit from super classes.

Peyton Jones’ take on type classes over time

Type classes: the most unusual feature of Haskell type system

1987 1989 1993 1997

Implementation begins

Despair Hack,

hack,

hack

Hey, what’s

the big

deal?

Incomprehension

Wild enthusiasm

Type-class fertility

Wadler/

Blott type

classes

(1989)

Multi-

parameter

type classes

(1991) Functional

dependencies

(2000)

Constructor

Classes (1995)

Associated

types (2005)

Implicit parameters

(2000)

Generic

programming

Testing

Extensible

records (1996) Computation

at the type

level

“newtype

deriving”

Derivable

type classes

Overlapping

instances

Variations

Applications

Type classes summary

• More flexible than Haskell designers first realized

 Automatic, type-driven generation of executable
“evidence,” i.e., dictionaries

• Many interesting generalizations

 still being explored heavily in research community

• Variants have been adopted

 Isabel, Clean, Mercury, Hal, Escher,…

 Who knows where they might appear in the future?

