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Outline 

• General discussion of types 
– What is a type? 

– Compile-time versus run-time checking 

– Conservative program analysis 

• Type inference 
– Discuss algorithm and examples 

– Illustrative example of static analysis algorithm 

• Polymorphism 
– Uniform versus non-uniform implementations 



Language Goals and Trade-offs 

• Thoughts to keep in mind 
– What features are convenient for programmer? 

– What other features do they prevent? 

– What are design tradeoffs? 

• Easy to write but harder to read? 

• Easy to write but poorer error messages? 

– What are the implementation costs? 
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What is a type? 

• A type is a collection of computable values 
that share some structural property. 

Examples Non-examples 

 

 
Integer 

String 

Int  Bool 

(Int  Int)  Bool 

3, True, \x->x 

Even integers 

f:Int  Int | x>3 =>          

       f(x) > x *(x+1) 

Distinction between sets of values that are types and sets 
that are not types is language dependent. 



Advantages of Types  

• Program organization and documentation 
– Separate types for separate concepts 

• Represent concepts from problem domain  

– Document intended use of declared identifiers 
• Types can be checked, unlike program comments 

• Identify and prevent errors 
– Compile-time or run-time checking can prevent 

meaningless computations such as  3 + true – “Bill” 

• Support optimization 
– Example: short integers require fewer bits 
– Access components of structures by known offset 



What is a type error? 

• Whatever the compiler/interpreter says it is? 

• Something to do with bad bit sequences? 

– Floating point representation has specific form 

– An integer may not be a valid float 

• Something about programmer intent and use? 

– A type error occurs when a value is used in a way 
that is inconsistent with its definition 

• Example: declare as character, use as integer  



Type errors are language dependent 

• Array out of bounds access 

– C/C++: runtime errors. 

– Haskell/Java: dynamic type errors. 

• Null pointer dereference 

– C/C++: run-time errors   

– Haskell/ML: pointers are hidden inside datatypes 

• Null pointer dereferences would be incorrect use of 
these datatypes, therefore static type errors 



Compile-time vs Run-time Checking 

• JavaScript and Lisp use run-time type checking 
–    f(x)         Make sure f is a function before  calling f 

 
 

• Haskell and Java use compile-time type checking  
–    f(x)         Must have f :: A  B and x :: A 

• Basic tradeoff 
– Both kinds of checking prevent type errors 
– Run-time checking slows down execution 
– Compile-time checking restricts program flexibility 

• JavaScript array: elements can have different types 
• Haskell list: all elements must have same type  

– Which gives better programmer diagnostics? 



Expressiveness 

• In JavaScript, we can write a function like 

 

Some uses will produce type error, some will not. 

• Static typing always conservative  

 

 
  Cannot decide at compile time if run-time error will occur! 

function f(x) { return x < 10 ? x : x(); } 

if  (complicated-boolean-expression) 

then  f(5); 

 else  f(15); 



Relative Type-Safety of Languages  

• Not safe: BCPL family, including C and C++ 
– Casts,  pointer arithmetic 

• Almost safe: Algol family, Pascal, Ada.  
– Dangling pointers.  

• Allocate a pointer p to an integer, deallocate the memory 
referenced by p, then later use the value pointed to by p.  

• No language with explicit deallocation of memory is fully 
type-safe. 

• Safe: Lisp, Smalltalk, ML, Haskell, Java, JavaScript 
– Dynamically typed: Lisp, Smalltalk, JavaScript 
– Statically typed: ML, Haskell, Java 

If code accesses data, it is handled with the type associated 
with the creation and previous manipulation of that data 



int f(int x) { return x+1; }; 

int g(int y) { return f(y+1)*2; }; 

Type Checking vs Type Inference 

• Standard type checking: 
       

 

– Examine body of each function                            

– Use declared types to check agreement 

• Type inference: 
 

 

– Examine code without type information. Infer the 
most general types that could have been declared. 

 

int f(int x) { return x+1; }; 

int g(int y) { return f(y+1)*2; }; 

  

    

  

ML and Haskell are designed to make type inference feasible. 



Why study type inference? 

• Types and type checking 

– Improved steadily since Algol 60 

• Eliminated sources of unsoundness. 

• Become substantially more expressive. 

– Important for modularity, reliability and compilation 

• Type inference 

– Reduces syntactic overhead of expressive types. 

– Guaranteed to produce most general type. 

– Widely regarded as important language innovation. 



History 

• Original type inference algorithm  
– Invented by Haskell Curry and Robert Feys for the simply typed 

lambda calculus in 1958 

• In 1969, Hindley 
– extended the algorithm to a richer language and proved it 

always produced the most general type  

• In 1978, Milner  
– independently developed equivalent algorithm, called algorithm 

W, during his work designing ML. 

• In 1982, Damas proved the algorithm was complete. 
– Currently used in many languages: ML, Ada, Haskell, C# 3.0, F#, 

Visual Basic .Net 9.0. Have been plans for Fortress, Perl 6, 
C++0x,… 



uHaskell 

• Subset of Haskell to explain type inference. 

– Haskell and ML both have overloading 

– Will not cover type inference with overloading 

<decl> ::= [<name> <pat>  = <exp>] 

<pat>  ::=  Id  | (<pat>, <pat>)     

  | <pat> : <pat> | [] 

<exp>  ::= Int | Bool | [] | Id | (<exp>) 

          | <exp> <op> <exp> 

          | <exp> <exp>  | (<exp>, <exp>) 

          | if <exp> then <exp> else <exp>                



Type Inference: Basic Idea 

• Example 

 

 

• What is the type of f? 

 +  has type: Int   Int   Int 

 2 has type: Int 

 Since we are applying + to x we need x :: Int 

 Therefore f x = 2 + x has type Int  Int 

 

f x = 2 + x 

> f :: Int -> Int 



Step 1: Parse Program 

• Parse program text to construct parse tree. 

 
f x = 2 + x 

 

Infix operators are converted 

to Curied function application 

during parsing: 

       2 + x      (+) 2 x 



Step 2: Assign type variables to nodes  

Variables are given same type 

as binding occurrence. 

f x = 2 + x 



Step 3: Add Constraints 

t_0 = t_1 -> t_6 

t_4 = t_1 -> t_6 

t_2 = t_3 -> t_4 

t_2 = Int -> Int -> Int 

t_3 = Int 

  

 

 

 
f x = 2 + x 



Step 4: Solve Constraints 
t_0 = t_1 -> t_6 

t_4 = t_1 -> t_6 

t_2 = t_3 -> t_4 

t_2 = Int -> Int -> Int 

t_3 = Int 

t_3 -> t_4 = Int -> (Int -> Int) 

t_3 = Int 

t_4 = Int -> Int 
t_0 = t_1 -> t_6 

t_4 = t_1 -> t_6 

t_4 = Int -> Int 

t_2 = Int -> Int -> Int 

t_3 = Int 

t_1 -> t_6 = Int -> Int 

t_1 = Int 

t_6 = Int 

t_0 = Int -> Int 

t_1 = Int 

t_6 = Int 

t_4 = Int -> Int 

t_2 = Int -> Int -> Int 

t_3 = Int 



Step 5: 
Determine type of declaration 

f x = 2 + x 

> f :: Int -> Int 

t_0 = Int -> Int 

t_1 = Int 

t_6 = Int -> Int 

t_4 = Int -> Int 

t_2 = Int -> Int -> Int 

t_3 = Int 



Type Inference Algorithm 

• Parse program to build parse tree 

• Assign type variables to nodes in tree 

• Generate constraints: 
– From environment: constants (2), built-in 

operators (+), known functions (tail). 

– From form of parse tree: e.g., application and 
abstraction nodes. 

• Solve constraints using unification 

• Determine types of top-level declarations 

 J. A. Robinson, A Machine-oriented logic based on the resolution principle,. J. 
Assoc. Comput. Mach. 12, 23–41 (1965). 



Constraints from Application Nodes 

• Function application (apply f to x)  

– Type of f  (t_0 in figure) must be domain  range. 

– Domain of f must be type of argument x  (t_1 in fig)  

– Range of f must be result of application    (t_2 in fig) 

– Constraint:  t_0 = t_1 -> t_2 

 

f x  

t_0 = t_1 -> t_2  



Constraints from Abstractions 

 

 

 

• Function declaration: 

– Type of f (t_0 in figure) must be domain  range 

– Domain is type of abstracted variable x (t_1 in fig) 

– Range is type of function body e             (t_2 in fig) 

– Constraint: t_0 = t_1 -> t_2 

f x = e 

t_0 = t_1 -> t_2  



Inferring Polymorphic Types 

f g = g 2 

> f :: (Int -> t_4) -> t_4 
• Example: 

• Step 1:                                                               
Build Parse Tree 



Inferring Polymorphic Types 

f g = g 2 

> f :: (Int -> t_4) -> t_4 
• Example: 

• Step 2:                                                            
Assign type variables 



Inferring Polymorphic Types 

• Example: 

• Step 3:                                                       
Generate constraints 

t_0 = t_1 -> t_4 

t_1 = t_3 -> t_4 

t_3 = Int 

f g = g 2 

> f :: (Int -> t_4) -> t_4 



Inferring Polymorphic Types 

• Example: 

• Step 4:                                                              
Solve constraints 

t_0 = t_1 -> t_4 

t_1 = t_3 -> t_4 

t_3 = Int 

t_0 = (Int -> t_4) -> t_4 

t_1 =  Int -> t_4 

t_3 =  Int 

 

f g = g 2 

> f :: (Int -> t_4) -> t_4 



Inferring Polymorphic Types 

• Example: 

• Step 5:                                                     
Determine type of top-level declaration 

t_0 = (Int -> t_4) -> t_4 

t_1 =  Int -> t_4 

t_3 =  Int 

Unconstrained type 

variables become 

polymorphic types. 

f g = g 2 

> f :: (Int -> t_4) -> t_4 



Using Polymorphic Functions 

• Function: 

 

• Possible applications: 

add x = 2 + x 

> add :: Int -> Int 

 

f add 

> 4 :: Int 

isEven x = mod (x, 2) == 0 

> isEven:: Int -> Bool 

 

f isEven 

> True :: Bool 

f g = g 2 

> f :: (Int -> t_4) -> t_4 



Recognizing Type Errors 

• Function: 
 

• Incorrect use 

 

 

 

 

 

• Type error:                                                          
cannot unify Bool  Bool and  Int  t 

 

not x = if x then True else False  

> not :: Bool -> Bool 

f not 

> Error: operator and operand don’t agree 

  operator domain: Int -> a 

  operand:         Bool -> Bool 

f g = g 2 

> f :: (Int -> t_4) -> t_4 



Another Example 

• Example: 

• Step 1:                                                                
Build Parse Tree 

f (g,x) = g (g x) 

> f :: (t_8 -> t_8, t_8) -> t_8 



Another Example 

• Example: 

• Step 2:                                                            
Assign type variables 

f (g,x) = g (g x) 

> f :: (t_8 -> t_8, t_8) -> t_8 



Another Example 

• Example: 

• Step 3:                                                        
Generate constraints 

f (g,x) = g (g x) 

> f :: (t_8 -> t_8, t_8) -> t_8 

t_0 = t_3 -> t_8 

t_3 = (t_1, t_2) 

t_1 = t_7 -> t_8 

t_1 = t_2 -> t_7 



Another Example 

• Example: 

• Step 4:                                                               
Solve constraints 

f (g,x) = g (g x) 

> f :: (t_8 -> t_8, t_8) -> t_8 

t_0 = t_3 -> t_8 

t_3 = (t_1, t_2) 

t_1 = t_7 -> t_8 

t_1 = t_2 -> t_7 

t_0 = (t_8 -> t_8, t_8) -> t_8 



Another Example 

• Example: 

• Step 5:                                                     
Determine type of f 

f (g,x) = g (g x) 

> f :: (t_8 -> t_8, t_8) -> t_8 

t_0 = t_3 -> t_8 

t_3 = (t_1, t_2) 

t_1 = t_7 -> t_8 

t_1 = t_2 -> t_7 

t_0 = (t_8 -> t_8, t_8) -> t_8 



Polymorphic Datatypes 

• Functions may have multiple clauses 
 

 

• Type inference  
– Infer separate type for each clause 

– Combine by adding constraint that all clauses 
must have the same type 

– Recursive calls: function has same type as its 
definition 

 

length [] = 0 

length (x:rest) = 1 + (length rest) 



Type Inference with Datatypes 

• Example: 

• Step 1: Build Parse Tree 

length (x:rest) = 1 + (length rest) 



Type Inference with Datatypes 

• Example: 

• Step 2: Assign type variables 

length (x:rest) = 1 + (length rest) 



Type Inference with Datatypes 

• Example: 

• Step 3: Generate constraints 

length (x:rest) = 1 + (length rest) 

t_0 = t_3 -> t_10 

t_3 = t_2 

t_3 = [t_1] 

t_6 = t_9 -> t_10 

t_4 = t_5 -> t_6 

t_4 = Int -> Int -> Int 

t_5 = Int 

t_0 = t_2 -> t_9 



Type Inference with Datatypes 

• Example: 

• Step 3: Solve Constraints 

length (x:rest) = 1 + (length rest) 

t_0 = t_3 -> t_10 

t_3 = t_2 

t_3 = [t_1] 

t_6 = t_9 -> t_10 

t_4 = t_5 -> t_6 

t_4 = Int -> Int -> Int 

t_5 = Int 

t_0 = t_2 -> t_9 

t_0 = [t_1] -> Int 



Multiple Clauses 

• Function with multiple clauses 
 

 

• Infer type of each clause 
– First clause:          

 

– Second clause:      

 

• Combine by equating types of two clauses                
  

append ([],r) = r 

append (x:xs, r) = x : append (xs, r) 

> append :: ([t_1], t_2) -> t_2 

> append :: ([t_3], t_4) -> [t_3] 

> append :: ([t_1], [t_1]) -> [t_1] 



Most General Type 

• Type inference produces the most general type 

 

 

 

• Functions may have many less general types 

 

 

 

• Less general types are all instances of most general 
type, also called the principal type 

map (f, []  ) = [] 

map (f, x:xs) = f x : map (f, xs) 

> map :: (t_1 -> t_2, [t_1]) -> [t_2] 

> map :: (t_1  -> Int, [t_1])  -> [Int] 

> map :: (Bool -> t_2, [Bool]) -> [t_2] 

> map :: (Char -> Int, [Char]) -> [Int] 



Type Inference Algorithm 

• When Hindley/Milner type inference 
algorithm was developed, its complexity was 
unknown 

• In 1989, Kanellakis, Mairson, and Mitchell 
proved that the problem was exponential-
time complete 

• Usually linear in practice though… 
– Running time is exponential in the depth of 

polymorphic declarations 



Information from Type Inference 

• Consider this function… 
 

 

   … and its most general type: 
 

 

• What does this type mean?  

reverse [] = [] 

reverse (x:xs) = reverse xs 

> reverse :: [t_1] -> [t_2] 

Reversing a list should not change its type, so 

there must be an error in the definition of reverse! 



Type Inference: Key Points 

• Type inference computes the types of expressions 
– Does not require type declarations for variables 
– Finds the most general type by solving constraints 
– Leads to polymorphism 

• Sometimes better error detection than type checking 
– Type may indicate a programming error even if no type error. 

• Some costs 
– More difficult to identify program line that causes error. 
– Natural implementation requires uniform representation sizes. 
– Complications regarding assignment took years to work out. 

• Idea can be applied to other program properties 
– Discover properties of program using same kind of analysis 



Haskell Type Inference 

• Haskell uses type classes  
– supports user-defined overloading, so the 

inference algorithm is more complicated. 

• ML restricts the language  
– to ensure that no annotations are required 

• Haskell provides additional features  
– like polymorphic recursion for which types cannot 

be inferred and so the user must provide 
annotations  



Parametric Polymorphism:          
 Haskell vs C++ 

• Haskell polymorphic function 
– Declarations (generally) require no type information 

– Type inference uses type variables to type expressions 

– Type inference substitutes for type variables as 
needed to instantiate polymorphic code 

• C++ function template 
– Programmer must declare the argument and result 

types of functions. 

– Programmers must use explicit type parameters to 
express polymorphism 

– Function application: type checker does instantiation 



Example: Swap Two Values 

• Haskell 

 

 

 

• C++ 

 

swap :: (IORef a, IORef a) -> IO () 

swap (x,y) = do { 

  val_x <- readIORef x; val_y <- readIORef y; 

  writeIORef y val_x;   writeIORef x val_y; 

  return () } 

template <typename T> 

void swap(T& x, T& y){ 

      T tmp = x;  x=y;  y=tmp; 

} 

Declarations  both swap two values polymorphically, but 

they are compiled very differently. 



Implementation 

• Haskell 
– swap is compiled into one function 
– Typechecker determines how function can be used 

• C++ 
– swap is compiled differently for each instance 
    (details beyond scope of this course …) 

• Why the difference? 
– Haskell ref cell is passed by pointer. The local x is a 

pointer to value on heap, so its size is constant. 
– C++ arguments passed by reference (pointer), but 

local x is on the stack, so its size depends on the type. 



Summary  

• Types are important in modern languages 

– Program organization and documentation 

– Prevent program errors 

– Provide important information to compiler 

• Type inference 

– Determine best type for an expression, based on 
known information about symbols in the expression 

• Polymorphism 

– Single algorithm (function) can have many types 




