
Types and Type Inference

Notes modified from John Mitchell and Kathleen
Fisher

Reading: “Concepts in Programming Languages”,

Revised Chapter 6 - handout on Web!!

CS 242 2012

Outline

• General discussion of types
– What is a type?

– Compile-time versus run-time checking

– Conservative program analysis

• Type inference
– Discuss algorithm and examples

– Illustrative example of static analysis algorithm

• Polymorphism
– Uniform versus non-uniform implementations

Language Goals and Trade-offs

• Thoughts to keep in mind
– What features are convenient for programmer?

– What other features do they prevent?

– What are design tradeoffs?

• Easy to write but harder to read?

• Easy to write but poorer error messages?

– What are the implementation costs?
Architect

Compiler,

Runtime
environ-

ment

Programmer

Q/A

Tester

Diagnostic
Tools

Programming
Language

What is a type?

• A type is a collection of computable values
that share some structural property.

Examples Non-examples

Integer

String

Int  Bool

(Int  Int)  Bool

3, True, \x->x

Even integers

f:Int  Int | x>3 =>

 f(x) > x *(x+1)

Distinction between sets of values that are types and sets
that are not types is language dependent.

Advantages of Types

• Program organization and documentation
– Separate types for separate concepts

• Represent concepts from problem domain

– Document intended use of declared identifiers
• Types can be checked, unlike program comments

• Identify and prevent errors
– Compile-time or run-time checking can prevent

meaningless computations such as 3 + true – “Bill”

• Support optimization
– Example: short integers require fewer bits
– Access components of structures by known offset

What is a type error?

• Whatever the compiler/interpreter says it is?

• Something to do with bad bit sequences?

– Floating point representation has specific form

– An integer may not be a valid float

• Something about programmer intent and use?

– A type error occurs when a value is used in a way
that is inconsistent with its definition

• Example: declare as character, use as integer

Type errors are language dependent

• Array out of bounds access

– C/C++: runtime errors.

– Haskell/Java: dynamic type errors.

• Null pointer dereference

– C/C++: run-time errors

– Haskell/ML: pointers are hidden inside datatypes

• Null pointer dereferences would be incorrect use of
these datatypes, therefore static type errors

Compile-time vs Run-time Checking

• JavaScript and Lisp use run-time type checking
– f(x) Make sure f is a function before calling f

• Haskell and Java use compile-time type checking
– f(x) Must have f :: A  B and x :: A

• Basic tradeoff
– Both kinds of checking prevent type errors
– Run-time checking slows down execution
– Compile-time checking restricts program flexibility

• JavaScript array: elements can have different types
• Haskell list: all elements must have same type

– Which gives better programmer diagnostics?

Expressiveness

• In JavaScript, we can write a function like

Some uses will produce type error, some will not.

• Static typing always conservative

 Cannot decide at compile time if run-time error will occur!

function f(x) { return x < 10 ? x : x(); }

if (complicated-boolean-expression)

then f(5);

 else f(15);

Relative Type-Safety of Languages

• Not safe: BCPL family, including C and C++
– Casts, pointer arithmetic

• Almost safe: Algol family, Pascal, Ada.
– Dangling pointers.

• Allocate a pointer p to an integer, deallocate the memory
referenced by p, then later use the value pointed to by p.

• No language with explicit deallocation of memory is fully
type-safe.

• Safe: Lisp, Smalltalk, ML, Haskell, Java, JavaScript
– Dynamically typed: Lisp, Smalltalk, JavaScript
– Statically typed: ML, Haskell, Java

If code accesses data, it is handled with the type associated
with the creation and previous manipulation of that data

int f(int x) { return x+1; };

int g(int y) { return f(y+1)*2; };

Type Checking vs Type Inference

• Standard type checking:

– Examine body of each function

– Use declared types to check agreement

• Type inference:

– Examine code without type information. Infer the
most general types that could have been declared.

int f(int x) { return x+1; };

int g(int y) { return f(y+1)*2; };

ML and Haskell are designed to make type inference feasible.

Why study type inference?

• Types and type checking

– Improved steadily since Algol 60

• Eliminated sources of unsoundness.

• Become substantially more expressive.

– Important for modularity, reliability and compilation

• Type inference

– Reduces syntactic overhead of expressive types.

– Guaranteed to produce most general type.

– Widely regarded as important language innovation.

History

• Original type inference algorithm
– Invented by Haskell Curry and Robert Feys for the simply typed

lambda calculus in 1958

• In 1969, Hindley
– extended the algorithm to a richer language and proved it

always produced the most general type

• In 1978, Milner
– independently developed equivalent algorithm, called algorithm

W, during his work designing ML.

• In 1982, Damas proved the algorithm was complete.
– Currently used in many languages: ML, Ada, Haskell, C# 3.0, F#,

Visual Basic .Net 9.0. Have been plans for Fortress, Perl 6,
C++0x,…

uHaskell

• Subset of Haskell to explain type inference.

– Haskell and ML both have overloading

– Will not cover type inference with overloading

<decl> ::= [<name> <pat> = <exp>]

<pat> ::= Id | (<pat>, <pat>)

 | <pat> : <pat> | []

<exp> ::= Int | Bool | [] | Id | (<exp>)

 | <exp> <op> <exp>

 | <exp> <exp> | (<exp>, <exp>)

 | if <exp> then <exp> else <exp>

Type Inference: Basic Idea

• Example

• What is the type of f?

 + has type: Int  Int  Int

 2 has type: Int

 Since we are applying + to x we need x :: Int

 Therefore f x = 2 + x has type Int  Int

f x = 2 + x

> f :: Int -> Int

Step 1: Parse Program

• Parse program text to construct parse tree.

f x = 2 + x

Infix operators are converted

to Curied function application

during parsing:

 2 + x  (+) 2 x

Step 2: Assign type variables to nodes

Variables are given same type

as binding occurrence.

f x = 2 + x

Step 3: Add Constraints

t_0 = t_1 -> t_6

t_4 = t_1 -> t_6

t_2 = t_3 -> t_4

t_2 = Int -> Int -> Int

t_3 = Int

f x = 2 + x

Step 4: Solve Constraints
t_0 = t_1 -> t_6

t_4 = t_1 -> t_6

t_2 = t_3 -> t_4

t_2 = Int -> Int -> Int

t_3 = Int

t_3 -> t_4 = Int -> (Int -> Int)

t_3 = Int

t_4 = Int -> Int
t_0 = t_1 -> t_6

t_4 = t_1 -> t_6

t_4 = Int -> Int

t_2 = Int -> Int -> Int

t_3 = Int

t_1 -> t_6 = Int -> Int

t_1 = Int

t_6 = Int

t_0 = Int -> Int

t_1 = Int

t_6 = Int

t_4 = Int -> Int

t_2 = Int -> Int -> Int

t_3 = Int

Step 5:
Determine type of declaration

f x = 2 + x

> f :: Int -> Int

t_0 = Int -> Int

t_1 = Int

t_6 = Int -> Int

t_4 = Int -> Int

t_2 = Int -> Int -> Int

t_3 = Int

Type Inference Algorithm

• Parse program to build parse tree

• Assign type variables to nodes in tree

• Generate constraints:
– From environment: constants (2), built-in

operators (+), known functions (tail).

– From form of parse tree: e.g., application and
abstraction nodes.

• Solve constraints using unification

• Determine types of top-level declarations

 J. A. Robinson, A Machine-oriented logic based on the resolution principle,. J.
Assoc. Comput. Mach. 12, 23–41 (1965).

Constraints from Application Nodes

• Function application (apply f to x)

– Type of f (t_0 in figure) must be domain  range.

– Domain of f must be type of argument x (t_1 in fig)

– Range of f must be result of application (t_2 in fig)

– Constraint: t_0 = t_1 -> t_2

f x

t_0 = t_1 -> t_2

Constraints from Abstractions

• Function declaration:

– Type of f (t_0 in figure) must be domain  range

– Domain is type of abstracted variable x (t_1 in fig)

– Range is type of function body e (t_2 in fig)

– Constraint: t_0 = t_1 -> t_2

f x = e

t_0 = t_1 -> t_2

Inferring Polymorphic Types

f g = g 2

> f :: (Int -> t_4) -> t_4
• Example:

• Step 1:
Build Parse Tree

Inferring Polymorphic Types

f g = g 2

> f :: (Int -> t_4) -> t_4
• Example:

• Step 2:
Assign type variables

Inferring Polymorphic Types

• Example:

• Step 3:
Generate constraints

t_0 = t_1 -> t_4

t_1 = t_3 -> t_4

t_3 = Int

f g = g 2

> f :: (Int -> t_4) -> t_4

Inferring Polymorphic Types

• Example:

• Step 4:
Solve constraints

t_0 = t_1 -> t_4

t_1 = t_3 -> t_4

t_3 = Int

t_0 = (Int -> t_4) -> t_4

t_1 = Int -> t_4

t_3 = Int

f g = g 2

> f :: (Int -> t_4) -> t_4

Inferring Polymorphic Types

• Example:

• Step 5:
Determine type of top-level declaration

t_0 = (Int -> t_4) -> t_4

t_1 = Int -> t_4

t_3 = Int

Unconstrained type

variables become

polymorphic types.

f g = g 2

> f :: (Int -> t_4) -> t_4

Using Polymorphic Functions

• Function:

• Possible applications:

add x = 2 + x

> add :: Int -> Int

f add

> 4 :: Int

isEven x = mod (x, 2) == 0

> isEven:: Int -> Bool

f isEven

> True :: Bool

f g = g 2

> f :: (Int -> t_4) -> t_4

Recognizing Type Errors

• Function:

• Incorrect use

• Type error:
cannot unify Bool  Bool and Int  t

not x = if x then True else False

> not :: Bool -> Bool

f not

> Error: operator and operand don’t agree

 operator domain: Int -> a

 operand: Bool -> Bool

f g = g 2

> f :: (Int -> t_4) -> t_4

Another Example

• Example:

• Step 1:
Build Parse Tree

f (g,x) = g (g x)

> f :: (t_8 -> t_8, t_8) -> t_8

Another Example

• Example:

• Step 2:
Assign type variables

f (g,x) = g (g x)

> f :: (t_8 -> t_8, t_8) -> t_8

Another Example

• Example:

• Step 3:
Generate constraints

f (g,x) = g (g x)

> f :: (t_8 -> t_8, t_8) -> t_8

t_0 = t_3 -> t_8

t_3 = (t_1, t_2)

t_1 = t_7 -> t_8

t_1 = t_2 -> t_7

Another Example

• Example:

• Step 4:
Solve constraints

f (g,x) = g (g x)

> f :: (t_8 -> t_8, t_8) -> t_8

t_0 = t_3 -> t_8

t_3 = (t_1, t_2)

t_1 = t_7 -> t_8

t_1 = t_2 -> t_7

t_0 = (t_8 -> t_8, t_8) -> t_8

Another Example

• Example:

• Step 5:
Determine type of f

f (g,x) = g (g x)

> f :: (t_8 -> t_8, t_8) -> t_8

t_0 = t_3 -> t_8

t_3 = (t_1, t_2)

t_1 = t_7 -> t_8

t_1 = t_2 -> t_7

t_0 = (t_8 -> t_8, t_8) -> t_8

Polymorphic Datatypes

• Functions may have multiple clauses

• Type inference
– Infer separate type for each clause

– Combine by adding constraint that all clauses
must have the same type

– Recursive calls: function has same type as its
definition

length [] = 0

length (x:rest) = 1 + (length rest)

Type Inference with Datatypes

• Example:

• Step 1: Build Parse Tree

length (x:rest) = 1 + (length rest)

Type Inference with Datatypes

• Example:

• Step 2: Assign type variables

length (x:rest) = 1 + (length rest)

Type Inference with Datatypes

• Example:

• Step 3: Generate constraints

length (x:rest) = 1 + (length rest)

t_0 = t_3 -> t_10

t_3 = t_2

t_3 = [t_1]

t_6 = t_9 -> t_10

t_4 = t_5 -> t_6

t_4 = Int -> Int -> Int

t_5 = Int

t_0 = t_2 -> t_9

Type Inference with Datatypes

• Example:

• Step 3: Solve Constraints

length (x:rest) = 1 + (length rest)

t_0 = t_3 -> t_10

t_3 = t_2

t_3 = [t_1]

t_6 = t_9 -> t_10

t_4 = t_5 -> t_6

t_4 = Int -> Int -> Int

t_5 = Int

t_0 = t_2 -> t_9

t_0 = [t_1] -> Int

Multiple Clauses

• Function with multiple clauses

• Infer type of each clause
– First clause:

– Second clause:

• Combine by equating types of two clauses

append ([],r) = r

append (x:xs, r) = x : append (xs, r)

> append :: ([t_1], t_2) -> t_2

> append :: ([t_3], t_4) -> [t_3]

> append :: ([t_1], [t_1]) -> [t_1]

Most General Type

• Type inference produces the most general type

• Functions may have many less general types

• Less general types are all instances of most general
type, also called the principal type

map (f, []) = []

map (f, x:xs) = f x : map (f, xs)

> map :: (t_1 -> t_2, [t_1]) -> [t_2]

> map :: (t_1 -> Int, [t_1]) -> [Int]

> map :: (Bool -> t_2, [Bool]) -> [t_2]

> map :: (Char -> Int, [Char]) -> [Int]

Type Inference Algorithm

• When Hindley/Milner type inference
algorithm was developed, its complexity was
unknown

• In 1989, Kanellakis, Mairson, and Mitchell
proved that the problem was exponential-
time complete

• Usually linear in practice though…
– Running time is exponential in the depth of

polymorphic declarations

Information from Type Inference

• Consider this function…

 … and its most general type:

• What does this type mean?

reverse [] = []

reverse (x:xs) = reverse xs

> reverse :: [t_1] -> [t_2]

Reversing a list should not change its type, so

there must be an error in the definition of reverse!

Type Inference: Key Points

• Type inference computes the types of expressions
– Does not require type declarations for variables
– Finds the most general type by solving constraints
– Leads to polymorphism

• Sometimes better error detection than type checking
– Type may indicate a programming error even if no type error.

• Some costs
– More difficult to identify program line that causes error.
– Natural implementation requires uniform representation sizes.
– Complications regarding assignment took years to work out.

• Idea can be applied to other program properties
– Discover properties of program using same kind of analysis

Haskell Type Inference

• Haskell uses type classes
– supports user-defined overloading, so the

inference algorithm is more complicated.

• ML restricts the language
– to ensure that no annotations are required

• Haskell provides additional features
– like polymorphic recursion for which types cannot

be inferred and so the user must provide
annotations

Parametric Polymorphism:
 Haskell vs C++

• Haskell polymorphic function
– Declarations (generally) require no type information

– Type inference uses type variables to type expressions

– Type inference substitutes for type variables as
needed to instantiate polymorphic code

• C++ function template
– Programmer must declare the argument and result

types of functions.

– Programmers must use explicit type parameters to
express polymorphism

– Function application: type checker does instantiation

Example: Swap Two Values

• Haskell

• C++

swap :: (IORef a, IORef a) -> IO ()

swap (x,y) = do {

 val_x <- readIORef x; val_y <- readIORef y;

 writeIORef y val_x; writeIORef x val_y;

 return () }

template <typename T>

void swap(T& x, T& y){

 T tmp = x; x=y; y=tmp;

}

Declarations both swap two values polymorphically, but

they are compiled very differently.

Implementation

• Haskell
– swap is compiled into one function
– Typechecker determines how function can be used

• C++
– swap is compiled differently for each instance
 (details beyond scope of this course …)

• Why the difference?
– Haskell ref cell is passed by pointer. The local x is a

pointer to value on heap, so its size is constant.
– C++ arguments passed by reference (pointer), but

local x is on the stack, so its size depends on the type.

Summary

• Types are important in modern languages

– Program organization and documentation

– Prevent program errors

– Provide important information to compiler

• Type inference

– Determine best type for an expression, based on
known information about symbols in the expression

• Polymorphism

– Single algorithm (function) can have many types

