
Scope, Function Calls and
Storage Management

CS 242 2012

Reading: Chapter 7, Concepts in Programming Languages

Topics

• Block-structured languages and stack storage

• In-line Blocks
– activation records

– storage for local, global variables

• First-order functions
– parameter passing

– tail recursion and iteration

• Higher-order functions
– deviations from stack discipline

– language expressiveness => implementation complexity

Block-Structured Languages

• Nested blocks, local variables

– Example

 { int x = 2;

 { int y = 3;

 x = y+2;

 }

 }

– Storage management
• Enter block: allocate space for variables

• Exits block: some or all space may be deallocated

new variables declared in nested blocks

inner
block

outer
block

local variable y

global variable x

Examples

• Blocks in common languages
– C, JavaScript * { … }
– Algol begin … end
– ML, Haskell let … in … end

• Two forms of blocks
– In-line blocks
– Blocks associated with functions or procedures

• Topic: block-based memory management, access
to local variables, parameters, global variables

* JavaScript functions provide blocks

Simplified Machine Model

Registers

Environment
Pointer

Program
Counter

Data Code

Heap

Stack

Interested in Memory Mgmt Only

• Registers, Code segment, Program counter

– Ignore registers

– Details of instruction set will not matter

• Data Segment

– Stack contains data related to block entry/exit

– Heap contains data of varying lifetime

– Environment pointer points to current stack position

• Block entry: add new activation record to stack

• Block exit: remove most recent activation record

Some basic concepts

• Scope
– Region of program text where declaration is visible

• Lifetime
– Period of time when location is allocated to program

Inner declaration of x hides outer one.

Called “hole in scope”

Lifetime of outer x includes time when inner
block is executed

Lifetime scope

Lines indicate “contour model” of scope.

{ int x = … ;

 { int y = … ;

 { int x = … ;

 ….

 };

 };

};

In-line Blocks

• Activation record
– Data structure stored on run-time stack

– Contains space for local variables

• Example

May need space for variables and intermediate results like (x+y), (x-y)

{ int x=0;

 int y=x+1;

 { int z=(x+y)*(x-y);

 };

};

Push record with space for x, y

Set values of x, y

 Push record for inner block

 Set value of z

 Pop record for inner block

Pop record for outer block

Activation record for in-line block

• Control link
– pointer to previous record

on stack

• Push record on stack:
– Set new control link to

point to old env ptr

– Set env ptr to new record

• Pop record off stack
– Follow control link of

current record to reset
environment pointer

Control link

Local variables

Intermediate results

Control link

Local variables

Intermediate results

Environment
Pointer

Can be optimized away, but assume not for purpose of discussion.

Example

{ int x=0;

 int y=x+1;

 { int z=(x+y)*(x-y);

 };

};

Push record with space for x, y

Set values of x, y

 Push record for inner block

 Set value of z

 Pop record for inner block

Pop record for outer block

Control link

x

y

0

1

x+y

x-y

Environment
Pointer

1

-1

Control link

z -1

Scoping rules

• Global and local variables

 { int x=0;

 int y=x+1;

 { int z=(x+y)*(x-y);

 };

};

x, y are local to outer block

z is local to inner bock

x, y are global to inner block

• Static scope
global refers to declaration in closest enclosing block

• Dynamic scope
global refers to most recent activation record

These are same until we consider function calls.

Functions and procedures

• Syntax of procedures (Algol) and functions (C)
procedure P (<pars>) <type> function f(<pars>)

 begin {

 <local vars> <local vars>

 <proc body> <function body>

 end; }

• Activation record must include space for

• parameters

• return address

• local variables,
intermediate results

• return value (an
intermediate result)

• location to put return
value on function exit

Activation record for function

• Return address
– Location of code to

execute on function
return

• Return-result address
– Address in activation

record of calling block to
store function return val

• Parameters
– Locations to contain data

from calling block

Control link

Local variables

Intermediate results

Environment
Pointer

Parameters

Return address

Return-result addr

Example

• Function
fact(n) = if n<= 1 then 1

 else n * fact(n-1)

– Return result address

– location to put fact(n)

• Parameter
– set to value of n by calling

sequence

• Intermediate result
– locations to contain value

of fact(n-1)

Control link

Local variables

Intermediate results

Environment
Pointer

Parameters

Return address

Return result addr

Control link

fact(n-1)

n

Return-result addr

3

fact(3)

Function call

Return address omitted; would be
ptr into code segment

Control link

fact(n-1)

n

Return-result addr

2

fact(2)

fact(n) = if n<= 1 then 1

 else n * fact(n-1)

Control link

fact(n-1)

n

Return-result addr

k

fact(k)

Environment
Pointer

Control link

fact(n-1)

n

Return-result addr

1

fact(1)

Function return next slide

Function return

Control link

fact(n-1)

n

Return result addr

3

fact(3)

Control link

fact(n-1)

n

Return result addr

1

2

fact(2)

Control link

fact(n-1)

n

Return result addr

1

fact(1)

fact(n) = if n<= 1 then 1

 else n * fact(n-1)

Control link

fact(n-1)

n

Return result addr

2

3

fact(3)

Control link

fact(n-1)

n

Return result addr

1

2

fact(2)

Topics for first-order functions

• Parameter passing
– pass-by-value: copy value to new activation record
– pass-by-reference: copy ptr to new activation record

• Access to global variables
– global variables are contained in an activation record

higher “up” the stack

• Tail recursion
– an optimization for certain recursive functions

See this yourself: write factorial and run under debugger

Parameter passing

• General terminology: L-values and R-values
– Assignment y := x+3

• Identifier on left refers to location, called its L-value
• Identifier on right refers to contents, called R-value

• Pass-by-reference
– Place L-value (address) in activation record
– Function can assign to variable that is passed

• Pass-by-value
– Place R-value (contents) in activation record
– Function cannot change value of caller’s variable
– Reduces aliasing (alias: two names refer to same loc)

Example

function f (x) =

 { x = x+1; return x; }

var y = 0;

print (f(y)+y);

pseudo-code activation records

f(y)

y 0

Control link

x

Return result addr

f(y)

f(y)

y 0

Control link

x

Return result addr

0

f(y)

Access to global variables

• Two possible scoping conventions
– Static scope: refer to closest enclosing block

– Dynamic scope: most recent activation record on stack

• Example

var x=1;

function g(z) { return x+z; }

function f(y) {

 var x = y+1;

 return g(y*x);

}

f(3);

x 1

x 4

y 3

z 12

outer block

f(3)

g(12)

Which x is used for expression x+z ?

Activation record for static scope

• Control link
– Link to activation record of

previous (calling) block

• Access link
– Link to activation record of

closest enclosing block in
program text

• Difference
– Control link depends on

dynamic behavior of prog
– Access link depends on

static form of program text

Control link

Local variables

Intermediate results

Environment
Pointer

Parameters

Return address

Return result addr

Access link

Static scope with access links

 Use access link to find global variable:

• Access link is always set to frame
of closest enclosing lexical block

• For function body, this is block
that contains function declaration

var x=1;

 function g(z) = { return x+z; }

 function f(y) =

 { var x = y+1;

 return g(y*x); }

 f(3);

x 1

x 4

y 3

z 12

outer block

f(3)

g(12) control link

access link

g …

f …

control link

access link

control link

access link

access link

control link

Tail recursion (first-order case)

• Function g makes a tail call to function f if
– Return value of function f is return value of g

• Example

fun g(x) = if x>0 then f(x) else f(x)*2

• Optimization
– Can pop activation record on a tail call

– Especially useful for recursive tail call
• next activation record has exactly same form

tail call not a tail call

Example Calculate least power of 2 greater than y

fun f(x,y) = if x>y

 then x

 else f(2*x, y);

f(1,3) + 7;

control

return val

x 1

y 3

control

return val

x 1

y 3

control

return val

x 2

y 3

control

return val

x 4

y 3

f(1,3)
Optimization

• Set return
value address
to that of caller

Question

• Can we do the
same with
control link?

Optimization

• avoid return to
caller

Tail recursion elimination

fun f(x,y) = if x>y

 then x

 else f(2*x, y);

f(1,3);

control

return val

x 1

y 3

f(4,3)

Optimization

• pop followed by push =
reuse activation record in place

Conclusion

• Tail recursive function equiv to
iterative loop

control

return val

x 2

y 3

f(1,3)

control

return val

x 4

y 3

f(2,3)

Tail recursion and iteration

fun f(x,y) = if x>y

 then x

 else f(2*x, y);

f(1,y);

control

return val

x 1

y 3

f(4,3)

control

return val

x 2

y 3

f(1,3)

control

return val

x 4

y 3

f(2,3)

function g(y) {

 var x = 1;

 while (!x>y)

 x = 2*x;

 return x;

}

initial value

 loop body

 test

Not essential to understand the ML code here.

Higher-Order Functions

• Language features
– Functions passed as arguments
– Functions that return functions from nested blocks
– Need to maintain environment of function

• Simpler case
– Function passed as argument
– Need pointer to activation record “higher up” in stack

• More complicated second case
– Function returned as result of function call
– Need to keep activation record of returning function

Complex nesting structure

var x=1;

 function g(z) { return x+z; }

 function f(y)

 { var x = y+1;

 return g(y*x); }

 f(3);

function m(…) {

 var x=1;

 …

 function n(…){

 function g(z) { return x+z; }

 …

 { …

 function f(y) {

 var x = y+1;

 return g(y*x); }

 …

 f(3); … }

 … n(…) …}

 … m(…)

Write as

Simplified code has same block nesting,
if we follow convention that each
declaration begins a new block.

JavaScript blocks and scopes

• { } groups JavaScript statements

– Does not provide a separate scope

• Blocks w/scope can be expressed using function

– (function(){ … })() - create function of no args and call

– Example
 var y=0;

 (function () { // begin block

 var x=2; // local variable x

 y = y+x;

 }) (); // end block

RECAP

Translating examples to JS

var x = 5;

 function f(y) {return (x+y)-2};

 function g(h){var x = 7; return h(x)};

 {var x = 10; g(f)};

(function (){

 var x = 5;

 (function (){

 function f(y) {return (x+y)-2};

 (function (){

 function g(h){var x = 7; return h(x)};

 (function (){

 var x = 10; g(f);

 })()

 })()

 })()

})()

Example and HW convention:

Each new declaration begins a
new scope

Pass function as argument

int x = 4;
 fun f(y) = x*y;
 fun g(h) = let
 int x=7
 in
 h(3) + x;
 g(f);

There are two declarations of x
Which one is used for each occurrence of x?

{ var x = 4;

 { function f(y) {return x*y};

 { function g(h) {

 var x = 7;

 return h(3) + x;

 };

 g(f);

} } }

Haskell Pseudo-JavaScript

Static Scope for Function Argument

int x = 4;

 fun f(y) = x*y;

 fun g(h) =

 let

 int x=7

 in

 h(3) + x;

 g(f);

x 4

h

y 3

f

g

Code

for f

Code

for g
g(f)

h(3)

x * y

x 7

follow access link
local var

• How is access link for h(3) set?

Static Scope for Function Argument

{ var x = 4;

 { function f(y) {return x*y};

 { function g(h) {

 int x=7;

 return h(3) + x;

 };

 g(f);

} } }

x 4

h

y 3

f

g

Code

for f

Code

for g
g(f)

h(3)

x * y

x 7

follow access link
local var

• How is access link for h(3) set?

Result of function call

Closures

• Function value is pair closure = env, code

• When a function represented by a closure is
called,

– Allocate activation record for call (as always)

– Set the access link in the activation record using
the environment pointer from the closure

Function Argument and Closures

int x = 4;

 fun f(y) = x*y;

 fun g(h) =

 let

 int x=7

 in

 h(3) + x;

 g(f);

x 4

access link set
from closure

Code

for f
f

access

Run-time stack with access links

Code

for g

h(3)

y 3

access

 g(f)
h

access

x 7

g

access

{ var x = 4;

 { function f(y){return x*y};

 { function g(h) {

 int x=7;

 return h(3)+x;

 };

 g(f);

}}}

Function Argument and Closures

x 4

access link set
from closure

Code

for f
f

access

Run-time stack with access links

Code

for g

h(3)

y 3

access

g(f)
h

access

x 7

g

access

Summary: Function Arguments

• Use closure to maintain a pointer to the static
environment of a function body

• When called, set access link from closure

• All access links point “up” in stack

– May jump past activ records to find global vars

– Still deallocate activ records using stack (lifo) order

Return Function as Result

• Language feature
– Functions that return “new” functions
– Need to maintain environment of function

• Example
 function compose(f,g)
 {return function(x) { return g(f (x)) }};

• Function “created” dynamically
– expression with free variables

values are determined at run time

– function value is closure = env, code
– code not compiled dynamically (in most languages)

Example: Return fctn with private state

fun mk_counter (init : int) =
 let val count = ref init

 fun counter(inc:int) =

 (count := !count + inc; !count)

 in

 counter

 end;

val c = mk_counter(1);

c(2) + c(2);

• Function to “make counter”
returns a closure

• How is correct value of
count determined in c(2) ?

ML

Example: Return fctn with private state

function mk_counter (init) {

 var count = init;

 function counter(inc) {count=count+inc; return
count};

 return counter};

var c = mk_counter(1);

c(2) + c(2);

JS

• Function to “make counter”
returns a closure

• How is correct value of
count determined in c(2) ?

Function Results and Closures
fun mk_counter (init : int) =
 let val count = ref init
 fun counter(inc:int) = (count := !count + inc; !count)

 in counter end

 end;

val c = mk_counter(1);

c(2) + c(2);

c

access

Code for

counter

Code for

mk_counter

c(2) access

inc 2

1 mk_counter(1)

count
init 1

access

counter

mk_c

Call changes cell
value from 1 to 3

3

ML

Function Results and Closures

function mk_counter (init) {

 var count = init;

 function counter(inc) {count=count+inc; return count};

 return counter};

var c = mk_counter(1);

c(2) + c(2);

 c

access

Code for

counter

Code for

mk_counter

c(2) access

inc 2

mk_counter(1)

count 1

init 1

access

counter

mk_c

JS

3

Summary: Return Function Results

• Use closure to maintain static environment

• May need to keep activation records after return

– Stack (lifo) order fails!

• Possible “stack” implementation

– Forget about explicit deallocation

– Put activation records on heap

– Invoke garbage collector as needed

– Not as totally crazy as is sounds

May only need to search reachable data

Summary of scope issues

• Block-structured lang uses stack of activ records
– Activation records contain parameters, local vars, …

– Also pointers to enclosing scope

• Several different parameter passing mechanisms

• Tail calls may be optimized

• Function parameters/results require closures
– Closure environment pointer used on function call

– Stack deallocation may fail if function returned from call

– Closures not needed if functions not in nested blocks

