CS 242

Fundamentals

Syntax and Semantics of Programs

* Syntax
— The symbols used to write a program

* Semantics
— The actions that occur when a program is executed

* Programming language implementation
— Syntax — Semantics

— Transform program syntax into machine instructions
that can be executed to cause the correct sequence of
actions to occur

Interpreter vs Compiler

Source Program

Input

v

4 Interpreter

Source Program

Input

» Target Program

Output

A 4

Output

Source
Program

Typical Compiler

—| Lexical Analyzer

v

Syntax Analyzer

\ 4

Semantic Analyzer

Intermediate Code
Generator

Y

\ 4

Code Optimizer

Code Generator

A 4

— Target

See summary in course text, compiler books

Program

Brief look at syntax

* Grammar
e =n| ete | e—e
n:=d | nd

dux=0]1]2|3]4|5]6]7]8]9
e Expressions in language

e —> e—e —» e—e+e — n—n+n —> nd-d+d — dd-d+d
—> ... > 27-4+3

Grammar defines a language
Expressions in language derived by sequence of productions

Theoretical Foundations

 Many foundational systems
— Computability Theory
— Program Logics
— Lambda Calculus
— Denotational Semantics
— Operational Semantics
— Type Theory

e Consider some of these methods
— Computability theory (halting problem)

— Lambda calculus (syntax, operational semantics)
— Operational semantics (not in book)

Lambda Calculus

* Formal system with three parts
— Notation for function expressions
— Proof system for equations
— Calculation rules called reduction

* Additional topics in lambda calculus (not covered)
— Mathematical semantics (=model theory)
— Type systems

We will look at syntax, equations and reduction

There is more detail in the book than we will cover in class

History

Original intention

— Formal theory of substitution (for FOL, etc.)

More successful for computable functions

— Substitution --> symbolic computation
— Church/Turing thesis

Influenced Lisp, Haskell, other languages

— See Boost Lambda Library for C++ function objects

* http://www.boost.org/doc/libs/1 51 0/doc/html/lamb
da.html

Important part of CS history and foundations

http://www.boost.org/doc/libs/1_51_0/doc/html/lambda.html
http://www.boost.org/doc/libs/1_51_0/doc/html/lambda.html

Why study this now?

* Basic syntactic notions
— Free and bound variables
— Functions
— Declarations

* Calculation rule
— Symbolic evaluation useful for discussing programs
— Used in optimization (in-lining), macro expansion
e Correct macro processing requires variable renaming

— lllustrates some ideas about scope and binding

* Lisp originally departed from standard lambda calculus,
returned to the fold through Scheme, Common Lisp

* Haskell, JavaScript reflect traditional lambda calculus

Expressions and Functions

* Expressions
X+Yy X+ 2%y +7z
* Functions
AX. (x+y) Az. (X + 2*y + 2)
* Application
(AX. (x+y)) 3 = 3+y
(Az. (x+2*Yy+2z))5 = x+2*y+5

Parsing: Ax.f(fx) = Ax.(f(f (x)))

Higher-Order Functions

* Given function f, return function f° f
Af. Ax. f (f x)

e How does this work?

(M. Ax. £ (F X)) oy, y+1) O
= Ax. (hy. y#1) (. y+1) ()
- 2. O, y+2) (e 1)

= AX. (x+1)+1

In pure lambda calculus, same result if step 2 is altered.

Declarations as “Syntactic Sugar”

function f(x) {
return x+2;

}
f(5);

(Af. f(5)) (x. x+2)

block body declared function

Declaration form used in ML, Haskell:
|€t X = el |n ez —_ (7\,X. ez) el

Free and Bound Variables

Bound variable is “placeholder”

— Variable x is bound in Ax. (x+y)

— Function Ax. (x+y) is same function as Az. (z+y)
Compare

Ix+ydx = Jz+ydz V¥x P(x) = Vz P(z)

Name of free (=unbound) variable does matter
— Variable y is free in Ax. (x+y)

— Function AX. (x+y) is not same as AX. (x+z)

Occurrences
— vyis free and bound in Ax. ((Ay. y+2) x) +vy

o~

Reduction

* Basic computation rule is B-reduction
(Ax.e;) e, — [e,/x]e,

where substitution involves renaming as needed

(next slide)
e Reduction:
— Apply basic computation rule to any subexpression
— Repeat

* Confluence:
— Final result (if there is one) is uniquely determined

Rename Bound Variables

* Function application
(AMf. Ax. T (fx)) (Ay. y+x)

apply twice add x to argument

@ Substitute “blindly”

WX, [(Ly. y+x) ((hy. y+x) X)]
€ Rename bound variables
(M. Az. f(f2)) (hy. y+X)

= Az. [y, y+x) (L. y+x) 2))] = Az, z4x+X

AX. X+X+X

Easy rule: always rename variables to be distinct

Main Points about Lambda Calculus

e A captures “essence” of variable binding
— Function parameters
— Declarations
— Bound variables can be renamed

* Succinct function expressions

* Simple symbolic evaluator via substitution

e Can be extended with
— Types
— Various functions

— Stores and side-effects
(But we didn’t cover these)

Operational Semantics

e Abstract definition of program execution

— Sequence of actions, formulated as transitions of
an abstract machine

 States corresponds to
— Expression/statement being evaluated/executed

— Abstract description of memory and other data
structures involved in computation

Structural Operational Semantics

* Systematic definition of operational semantics

— Specify the transitions in a syntax oriented manner
using the inductive nature of program syntax

 Example

— The state transition for el + e2 is described using the
transitions for el and the transition for e2

* Plan
— SOS of a simple subset of JavaScript
— Summarize scope, prototype lookup in JavaScript

Simplified subset of JavaScript

 Three syntactic categories
— Arith expressions: a:=n|X|a+a|a*a
— Bool expressions: b:=a<=a | notb|bandb
— Statements . su=skip|x=als;s|
if b then s elses | whilebdos
* States
—PairS=(t,o0)
— t : syntax being evaluated/executed
— o : abstract description of memory, in this subset a
function from variable names to values, i.e.,
G : Var »>Values

Sample operational rules

A rule for Arithmetic Expressions

<323 U) = <a!23 U>

<31’U> e <af130>
iaE zn @ — =FE

I F Ep) — G = E

[Asa] [Asb]

How to interpret this rule 7
o If the term a; partially evaluates to aj then a; + ap partially
evaluates to aj + a».
@ Once the expression a; reduces to a value n, then start
evaluating a»

Example :
((10+12) + (134 20),0) o (22 + (134 20), o) a1 (22+33,0)

Sample rules

A rule for Statements

g — Pielo e n)

[Ca]

(x:—a g = (x = a",o’)[3 (x :==mn,0) — {(0’)

How to interpret this rule ?

o If the arithmetic exp a partially evaluates to a’ then the
statement x = a partially evaluates to x = &'.

@ Rule ¢ applies when a reduces to a value n.

@ Put(o, x,n) updates the value of x to n.

Example : ((x :==10+ 12, 0) S, (x :==22,0) =2, (')

Form of SOS

General form of transition rule:

(1)

Pi..... P, are the conditions that must hold for the transition to
go through Also called the premise for the rule. These could be

@ Other transitions corresponding to the sub-terms.

@ Predicates that must be true.

@ Calls to meta functions like :

o get(o,x) = v : Fetch the value of x.
o put(o,x,n) =o' Update value of x to n and return new
store.

Conditional and loops

If Then Else

(if tt then s; else s9,0) — (s1,0)[Csa]
(1f £f then s; else s85,0) — (s9,0)[Cs]
(b,0) — (b',0)
(if b then s; else s5,0) — (ifb’ then s; else s,5,0)

[CSC]

(while b do s,0) —
(if b then s; while b s else skip end, 0)[Cg]

Context Sensitive Rules

Similar rules

<31, U) B <a!13 U)

<32:U> = <3’2’U>
(n+ ar,0) — (n+ a5, 0)

<3230-> = <3"230>
(n*ap,0) — (nxah, o)

[ABa]

(a1 + ap,0) — (a) + ap, 0)
<31:0> = <3’1,U>

A
(a1 *x ap,0) — (a] * ag,a)[sal

@ The above rules have a similar premise :

@ Combine them into a single rule of the following form :

(a,0) — {4, 0)

AC(a) — AC(d)

where AC . |_+ajn+ |_xaln*_

Summary of Operational Semantics

e Abstract definition program execution

— Uses some characterization of program state that
reflects the power and expressiveness of language

e JavaScript operational semantics
— Based on ECMA Standard
— Lengthy: 70 pages of rules (ascii)
— Precise definition of program execution, in detail

— Can prove properties of JavaScript programs
* Progress: Evaluation only halts with expected set of values
* Reachability: precise definition of “garbage” for JS programs
 Basis for proofs of security mechanisms, variable renaming,

Imperative vs Functional Programs

e Denotational semantics

— The meaning of an imperative program is a
function from states to states.

— We can write this as a pure functional program
that operates on data structures that represent
states

* Operational semantics

— Evaluation =V and execution —s relations are
functions from states to states

— We could define these functions in Haskell

In principle, every imperative program can be written as a
pure functional program (in another language)

What is a functional language ?

e “No side effects”

e OK, we have side effects, but we also have
higher-order functions...

pure functional language

No-side-effects language test

Within the scope of specific declarations of x;,x,, ..., X, all

occurrences of an expression e containing only variables x,,x,, ...,
X,, must have the same value.

 Example
begin
integer x=3; integer y=4;
5*(x+y)-3
R // no new declaration of x ory //

4% (xFy)+1

end

Example languages

Haskell
Pure JavaScript
function (){...}, f(e), ==, [x,y,...], first [...], rest [...], ...
Impure JavaScript
x=1; ...; Xx=2; ...
Common procedural languages are not

functional
— Pascal, C, Ada, C++, Java, Modulg, ...

Backus” Turing Award
http://www.cs.cmu.edu/~crary/819-f09/Backus78.pdf

* John Backus was designer of Fortran, BNF, etc.
* Turing Award in 1977

* Turing Award Lecture
— Functional prog better than imperative programming
— Easier to reason about functional programs
— More efficient due to parallelism

— Algebraic laws
Reason about programs
Optimizing compilers

http://www.cs.cmu.edu/~crary/819-f09/Backus78.pdf
http://www.cs.cmu.edu/~crary/819-f09/Backus78.pdf
http://www.cs.cmu.edu/~crary/819-f09/Backus78.pdf

Reasoning about programs

To prove a program correct,
— must consider everything a program depends on

In functional programs,

— dependence on any data structure is explicit
Therefore,

— easier to reason about functional programs
Do you believe this?

— This thesis must be tested in practice

— Many who prove properties of programs believe this
— Not many people really prove their code correct

Haskell Quicksort

* Very succinct program

gsort [] =[]

gsort (x:xs) = gsort elts It x ++ [X]

++ gsort elts_greq_x
whereelts It x=[y | y<-xs,y<Xx]
elts greq x=[y | y<-xs,y>=x]

* This is the whole thing

— No assignment — just write expression for sorted list

— No array indices, no pointers, no memory
management, ...

— Disclaimer: does not sort in place

Compare: C quicksort

gsort(a, lo, hi) int a[], hi, lo;
{inth, |, p,t;
if (lo < hi) {
| =lo; h = hi; p = a[hi];
do {
while ((I < h) && (a[l] <= p)) | = I+1;
while ((h > 1) && (a[h] >=p)) h=h-1;
if (I <h){t=all]; all]=a[h]; alh] =t; }
} while (I < h);
t = a[l]; a[l] = a[hi]; a[hi] = t;
gsort(a, lo, I-1);
gsort(a, I+1, hi);

Hudak and Jones, Haskell vs Ada vs ...,
Yale University Tech Report, 1994

Interesting case study

* Naval Center programming experiment

— Separate teams worked on separate languages
— Surprising differences

Language Lines of code | Lines of documentation | Development time (hours)
(1) Haskell 85 465 10
(2) Ada 767 714 23
(3) Ada9X 800 200 28
(4) C++ 1105 130 -
(5) Awk,/Nawk 250 150 -
(6) Rapide 157 0 54
(7) Griffin 251 0 3
(8) Proteus 293 79 26
(9) Relational Lisp 274 12 3
{10) Haskell 156 112 S

Some programs were incomplete or did not run

— Many evaluators didn’t understand, when shown the code, that the
Haskell program was complete. They thought it was a high level
partial specification.

Disadvantages of Functional Prog

Functional programs often less efficient. Why?

Change 3rd element of list x to y

(cons (car x) (cons (cadr x) (cons y (cdddr x))))
— Build new cells for first three elements of list

(rplaca (cddr x) y)

— Change contents of third cell of list directly

However, many optimizations are possible

Von Neumann bottleneck

* VVon Neumann

— Mathematician responsible for idea of stored
program

* Von Neumann Bottleneck
— Backus’ term for limitation in CPU-memory transfer

* Related to sequentiality of imperative languages

— Code must be executed in specific order
function f(x) { if (x<y) theny =x; else x=vy; }
g(£(i), f(j));

Eliminating VN Bottleneck

* No side effects
— Evaluate subexpressions independently

— Example
e function f(x) {returnx<y ?1:2;}

« g(f(i), f(j), f(k), ...);
* Does this work in practice? Good idea but ...
— Too much parallelism
— Little help in allocation of processors to processes

— David Shaw promised to build the non-Von ...
» Effective, easy concurrency is a hard problem

Summary

Parsing

IH

— The “real” program is the disambiguated parse tree

Lambda Calculus
— Notation for functions, free and bound variables
— Calculate using substitution, rename to avoid capture

Operational semantics
Pure functional program

— May be easier to reason about
— Parallelism: easy to find, too much of a good thing

Reading

e Textbook

— Section 4.1.1, Structure of a simple compiler
— Section 4.2, Lambda calculus, except
» Skip “Reduction and Fixed Points” —too much detail
— Section 4.4, Functional and imperative languages

* Additional paper (link on web site)

— “An Operational Semantics for JavaScript”
* More detail than need, but provided for reference
* Try to read up through section 2.3 for the main ideas
* Do not worry about details beyond lecture or homework

— JavaScript Standard: http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-262.pdf

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf

