
Fundamentals 

CS 242 

Reading: See last slide 



Syntax and Semantics of Programs 

• Syntax 

– The symbols used to write a program 

• Semantics  

– The actions that occur when a program is executed 

• Programming language implementation 

– Syntax  Semantics 

– Transform program syntax into machine instructions 
that can be executed to cause the correct sequence of 
actions to occur 



Interpreter vs Compiler 

Source Program 

Source Program 

Compiler 

Input Output Interpreter 

Input Output Target Program 



Typical Compiler 

See summary in course text, compiler books 

Source 
Program 

Lexical Analyzer 

Syntax Analyzer 

Semantic Analyzer 

Intermediate Code 
Generator 

Code Optimizer 

Code Generator Target 
Program 



Brief look at syntax 

• Grammar 
    e  ::=  n  |  e+e  |  e e   

    n  ::=  d  |  nd 
    d  ::=  0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9 

• Expressions in language 
e   e e  e e+e  n n+n  nd d+d  dd d+d 

   …   27  4 + 3 

 
Grammar defines a language 
Expressions in language derived by sequence of productions 
 
Many of you are familiar with this to some degree 



Theoretical Foundations 

• Many foundational systems 
– Computability Theory 
– Program Logics 
– Lambda Calculus 
– Denotational Semantics 
– Operational Semantics 
– Type Theory  

• Consider some of these methods 
– Computability theory (halting problem) 
– Lambda calculus (syntax, operational semantics) 
– Operational semantics (not in book) 



Lambda Calculus 

• Formal system with three parts 
– Notation for function expressions 
– Proof system for equations 
– Calculation rules called reduction 

• Additional topics in lambda calculus (not covered) 

– Mathematical semantics (=model theory) 
– Type systems 

 
We will look at syntax, equations and reduction 
 

There is more detail in the book than we will cover in class 



History 

• Original intention 

– Formal theory of substitution (for FOL, etc.) 

• More successful for computable functions 

– Substitution  -->  symbolic computation 

– Church/Turing thesis 

• Influenced Lisp, Haskell, other languages 

– See Boost Lambda Library for C++ function objects 

• http://www.boost.org/doc/libs/1_51_0/doc/html/lamb
da.html  

• Important part of CS history and foundations 

http://www.boost.org/doc/libs/1_51_0/doc/html/lambda.html
http://www.boost.org/doc/libs/1_51_0/doc/html/lambda.html


Why study this now? 

• Basic syntactic notions 
– Free and bound variables 
– Functions 
– Declarations 

• Calculation rule 
– Symbolic evaluation useful for discussing programs 
– Used in optimization (in-lining), macro expansion 

• Correct macro processing requires variable renaming 

– Illustrates some ideas about scope and binding 
• Lisp originally departed from standard lambda calculus, 

returned to the fold through Scheme, Common Lisp 
• Haskell, JavaScript reflect traditional lambda calculus 



Expressions and Functions 

• Expressions 
x + y             x + 2*y + z 

• Functions 
x. (x+y)         z. (x + 2*y + z) 

• Application 
( x. (x+y)) 3                =  3 + y 

( z. (x + 2*y + z)) 5     =  x + 2*y + 5 

 

Parsing:  x. f (f x) = x.( f (f (x)) ) 



Higher-Order Functions 

• Given function f, return function f  f 
      f.  x. f (f x) 

• How does this work? 

      ( f.  x. f (f x))  ( y. y+1) 

      =  x. ( y. y+1) (( y. y+1)  x) 

      =  x. ( y. y+1) (x+1) 

       =  x. (x+1)+1 

In pure lambda calculus, same result if step 2 is altered. 



Declarations as “Syntactic Sugar” 

function f(x) { 

  return x+2; 

} 

f(5); 

block body declared function 

( f.  f(5))  ( x. x+2) 

Declaration form used in ML, Haskell: 

       let x = e1 in e2   =   ( x.  e2)  e1 



Free and Bound Variables 

• Bound variable is “placeholder” 
– Variable x is bound in x. (x+y)  

– Function x. (x+y) is same function as z. (z+y)  

• Compare 
 x+y dx  =   z+y dz       x  P(x) = z  P(z)   

• Name of free (=unbound) variable does matter 
– Variable y is free in x. (x+y)  

– Function x. (x+y) is not  same as  x. (x+z) 

• Occurrences 
– y is free and bound in   x. (( y. y+2) x) + y   



Reduction 

• Basic computation rule is -reduction 

                ( x. e1) e2       [e2/x]e1 

where substitution involves renaming as needed  

                                                      (next slide) 

• Reduction: 
– Apply basic computation rule to any subexpression 

– Repeat  

• Confluence: 
– Final result (if there is one) is uniquely determined 



Rename Bound Variables 

• Function application 

( f.  x. f (f x))  ( y. y+x) 

 

 
apply twice add x to argument 

Substitute “blindly” 

    x. [( y. y+x) (( y. y+x) x)]   =  x. x+x+x   

Rename bound variables 

( f.  z. f (f z))  ( y. y+x) 

=  z. [( y. y+x) (( y. y+x) z))]  =  z. z+x+x   

Easy rule: always rename variables to be distinct 



Main Points about Lambda Calculus 

•   captures “essence” of variable binding 
– Function parameters 
– Declarations 
– Bound variables can be renamed 

• Succinct function expressions 
• Simple symbolic evaluator via substitution 
• Can be extended with 

– Types 
– Various functions 
– Stores and side-effects 
( But we didn’t cover these ) 



Operational Semantics 

• Abstract definition of program execution 

– Sequence of actions, formulated as transitions of 
an abstract machine 

• States corresponds to 

– Expression/statement being evaluated/executed 

– Abstract description of memory and other data 
structures involved in computation 



Structural Operational Semantics 

• Systematic definition of operational semantics 

– Specify the transitions in a syntax oriented manner 
using the inductive nature of program syntax 

• Example 

– The state transition for e1 + e2 is described using the 
transitions for e1 and the transition for e2 

• Plan 

– SOS of a simple subset of JavaScript  

– Summarize scope, prototype lookup in JavaScript 



Simplified subset of JavaScript 

• Three syntactic categories 
– Arith expressions :    a ::= n | X | a + a | a * a 
– Bool  expressions :    b ::= a<=a | not b | b and b 
– Statements           :    s ::= skip | x = a | s; s |   
                                         if b then s else s | while b do s 

• States 
– Pair S =   t ,   
– t : syntax being evaluated/executed 
–  : abstract description of memory, in this subset a 
        function from variable names to values, i.e.,  
         : Var Values 



Sample operational rules 

 



Sample rules 

 



Form of SOS 

 



Conditional and loops 

 



Context Sensitive Rules 

 



Summary of Operational Semantics 

• Abstract definition program execution 
– Uses some characterization of program state that 

reflects the power and expressiveness of language 

• JavaScript operational semantics 
– Based on ECMA Standard 
– Lengthy: 70 pages of rules (ascii) 
– Precise definition of program execution, in detail 
– Can prove properties of JavaScript programs 

• Progress: Evaluation only halts with expected set of values 
• Reachability: precise definition of “garbage” for JS programs 
• Basis for proofs of security mechanisms, variable renaming, 

… 



Imperative vs Functional Programs 

• Denotational semantics 
– The meaning of an imperative program is a 

function from states to states. 

– We can write this as a pure functional program 
that operates on data structures that represent 
states 

• Operational semantics 
– Evaluation v and execution s relations are 

functions from states to states 

– We could define these functions in Haskell 

 In principle, every imperative program can be written as a  

pure functional program (in another language) 



What is a functional  language ? 

 

• “No side effects” 

• OK, we have side effects, but we also have 
higher-order functions… 

 

 
     We will use pure functional language  to mean  

     “a language with functions, but without side effects 

     or other imperative features.” 



No-side-effects language test 

   Within the scope of specific declarations of x1,x2, …, xn, all 
occurrences of an expression e containing only variables x1,x2, …, 
xn, must have the same value. 

 

• Example 
begin 

  integer x=3; integer y=4; 

     5*(x+y)-3     

     …              // no new declaration of x or y // 

     4*(x+y)+1 

end 

? 



Example languages 

• Haskell 

• Pure JavaScript 

function (){…}, f(e), ==, [x,y,…], first […], rest […], … 

• Impure JavaScript 

 x=1; … ; x=2; … 

• Common procedural languages are not 
functional 

– Pascal, C, Ada, C++, Java, Modula, … 



        Backus’ Turing Award 

• John Backus was designer of Fortran, BNF, etc. 

• Turing Award in  1977 

• Turing Award Lecture 

– Functional prog better than imperative programming 

– Easier to reason about functional programs 

– More efficient due to parallelism 

– Algebraic laws  

Reason about programs 

Optimizing compilers 

http://www.cs.cmu.edu/~crary/819-f09/Backus78.pdf  

http://www.cs.cmu.edu/~crary/819-f09/Backus78.pdf
http://www.cs.cmu.edu/~crary/819-f09/Backus78.pdf
http://www.cs.cmu.edu/~crary/819-f09/Backus78.pdf


Reasoning about programs 

• To prove a program correct,  
– must consider everything a program depends on 

• In functional programs, 
– dependence on any data structure is explicit 

• Therefore,  
– easier to reason about functional programs 

• Do you believe this? 
– This thesis must be tested in practice 
– Many who prove properties of programs believe this 
– Not many people really prove their code correct 



Haskell Quicksort 

• Very succinct program 
qsort [] = []  
qsort (x:xs) = qsort elts_lt_x ++ [x]  
                                          ++ qsort elts_greq_x  
  where elts_lt_x = [y | y <- xs, y < x]  
               elts_greq_x = [y | y <- xs, y >= x]  

• This is the whole thing 
– No assignment – just write expression for sorted list 
– No array indices, no pointers, no memory 

management, … 
– Disclaimer: does not sort in place 



Compare: C quicksort 

qsort( a, lo, hi ) int a[], hi, lo;  

{ int h, l, p, t;  

   if (lo < hi) {  

         l = lo; h = hi; p = a[hi];  

         do {  

              while ((l < h) && (a[l] <= p)) l = l+1;  

              while ((h > l) && (a[h] >= p)) h = h-1; 

              if (l < h) { t = a[l]; a[l] = a[h]; a[h] = t; }  

          } while (l < h);  

          t = a[l]; a[l] = a[hi]; a[hi] = t;  

          qsort( a, lo, l-1 );  

          qsort( a, l+1, hi );  

     }  

}  



Interesting case study 

• Naval Center programming experiment 
– Separate teams worked on separate languages 

– Surprising differences 

 

 

 

 

 

 

 

 

    Some programs were incomplete or did not run 

– Many evaluators didn’t understand, when shown the code, that the 
Haskell program was complete. They thought it was a high level 
partial specification. 

Hudak and Jones, Haskell vs Ada vs …, 
Yale University Tech Report, 1994 



Disadvantages of Functional Prog 

Functional programs often less efficient. Why? 

Change 3rd element of list x to y 

(cons (car x) (cons (cadr x) (cons y (cdddr x)))) 

– Build new cells for first three elements of list 

(rplaca (cddr x) y) 

– Change contents of third cell of list directly 

  However, many optimizations are possible 

A B C D 



Von Neumann bottleneck 

• Von Neumann 
– Mathematician responsible for idea of stored 

program 

• Von Neumann Bottleneck  
– Backus’ term for limitation in CPU-memory transfer 

• Related to sequentiality of imperative languages 
– Code must be executed in specific order 

function f(x) { if (x<y) then y = x; else x = y; } 

g( f(i), f(j) ); 

 



Eliminating VN Bottleneck 

• No side effects 
– Evaluate subexpressions independently 
– Example 

• function  f(x)  { return x<y ? 1 : 2; } 
• g(f(i), f(j), f(k), … ); 

• Does this work in practice? Good idea but ... 
– Too much parallelism 
– Little help in allocation of processors to processes 
– ...  
– David Shaw promised to build the non-Von ... 

• Effective, easy concurrency is a hard  problem 



Summary 

• Parsing 

– The “real” program is the disambiguated parse tree 

• Lambda Calculus 

– Notation for functions, free and bound variables 

– Calculate using substitution, rename to avoid capture 

• Operational semantics 

• Pure functional program 

– May be easier to reason about 

– Parallelism: easy to find, too much of a good thing 



Reading 

• Textbook 
– Section 4.1.1, Structure of a simple compiler 

– Section 4.2, Lambda calculus, except 
• Skip “Reduction and Fixed Points” – too much detail 

– Section 4.4, Functional and imperative languages 

• Additional paper   (link on web site) 

– “An Operational Semantics for JavaScript” 
• More detail than need, but provided for reference 

• Try to read up through section 2.3 for the main ideas 

• Do not worry about details beyond lecture or homework  

– JavaScript Standard: http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-262.pdf 

 

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf

