
Fundamentals

CS 242

Reading: See last slide

Syntax and Semantics of Programs

• Syntax

– The symbols used to write a program

• Semantics

– The actions that occur when a program is executed

• Programming language implementation

– Syntax Semantics

– Transform program syntax into machine instructions
that can be executed to cause the correct sequence of
actions to occur

Interpreter vs Compiler

Source Program

Source Program

Compiler

Input Output Interpreter

Input Output Target Program

Typical Compiler

See summary in course text, compiler books

Source
Program

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Code Optimizer

Code Generator Target
Program

Brief look at syntax

• Grammar
 e ::= n | e+e | e e

 n ::= d | nd
 d ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

• Expressions in language
e e e e e+e n n+n nd d+d dd d+d

 … 27 4 + 3

Grammar defines a language
Expressions in language derived by sequence of productions

Many of you are familiar with this to some degree

Theoretical Foundations

• Many foundational systems
– Computability Theory
– Program Logics
– Lambda Calculus
– Denotational Semantics
– Operational Semantics
– Type Theory

• Consider some of these methods
– Computability theory (halting problem)
– Lambda calculus (syntax, operational semantics)
– Operational semantics (not in book)

Lambda Calculus

• Formal system with three parts
– Notation for function expressions
– Proof system for equations
– Calculation rules called reduction

• Additional topics in lambda calculus (not covered)

– Mathematical semantics (=model theory)
– Type systems

We will look at syntax, equations and reduction

There is more detail in the book than we will cover in class

History

• Original intention

– Formal theory of substitution (for FOL, etc.)

• More successful for computable functions

– Substitution --> symbolic computation

– Church/Turing thesis

• Influenced Lisp, Haskell, other languages

– See Boost Lambda Library for C++ function objects

• http://www.boost.org/doc/libs/1_51_0/doc/html/lamb
da.html

• Important part of CS history and foundations

http://www.boost.org/doc/libs/1_51_0/doc/html/lambda.html
http://www.boost.org/doc/libs/1_51_0/doc/html/lambda.html

Why study this now?

• Basic syntactic notions
– Free and bound variables
– Functions
– Declarations

• Calculation rule
– Symbolic evaluation useful for discussing programs
– Used in optimization (in-lining), macro expansion

• Correct macro processing requires variable renaming

– Illustrates some ideas about scope and binding
• Lisp originally departed from standard lambda calculus,

returned to the fold through Scheme, Common Lisp
• Haskell, JavaScript reflect traditional lambda calculus

Expressions and Functions

• Expressions
x + y x + 2*y + z

• Functions
x. (x+y) z. (x + 2*y + z)

• Application
(x. (x+y)) 3 = 3 + y

(z. (x + 2*y + z)) 5 = x + 2*y + 5

Parsing: x. f (f x) = x.(f (f (x)))

Higher-Order Functions

• Given function f, return function f f
 f. x. f (f x)

• How does this work?

 (f. x. f (f x)) (y. y+1)

 = x. (y. y+1) ((y. y+1) x)

 = x. (y. y+1) (x+1)

 = x. (x+1)+1

In pure lambda calculus, same result if step 2 is altered.

Declarations as “Syntactic Sugar”

function f(x) {

 return x+2;

}

f(5);

block body declared function

(f. f(5)) (x. x+2)

Declaration form used in ML, Haskell:

 let x = e1 in e2 = (x. e2) e1

Free and Bound Variables

• Bound variable is “placeholder”
– Variable x is bound in x. (x+y)

– Function x. (x+y) is same function as z. (z+y)

• Compare
 x+y dx = z+y dz x P(x) = z P(z)

• Name of free (=unbound) variable does matter
– Variable y is free in x. (x+y)

– Function x. (x+y) is not same as x. (x+z)

• Occurrences
– y is free and bound in x. ((y. y+2) x) + y

Reduction

• Basic computation rule is -reduction

 (x. e1) e2 [e2/x]e1

where substitution involves renaming as needed

 (next slide)

• Reduction:
– Apply basic computation rule to any subexpression

– Repeat

• Confluence:
– Final result (if there is one) is uniquely determined

Rename Bound Variables

• Function application

(f. x. f (f x)) (y. y+x)

apply twice add x to argument

Substitute “blindly”

 x. [(y. y+x) ((y. y+x) x)] = x. x+x+x

Rename bound variables

(f. z. f (f z)) (y. y+x)

= z. [(y. y+x) ((y. y+x) z))] = z. z+x+x

Easy rule: always rename variables to be distinct

Main Points about Lambda Calculus

• captures “essence” of variable binding
– Function parameters
– Declarations
– Bound variables can be renamed

• Succinct function expressions
• Simple symbolic evaluator via substitution
• Can be extended with

– Types
– Various functions
– Stores and side-effects
(But we didn’t cover these)

Operational Semantics

• Abstract definition of program execution

– Sequence of actions, formulated as transitions of
an abstract machine

• States corresponds to

– Expression/statement being evaluated/executed

– Abstract description of memory and other data
structures involved in computation

Structural Operational Semantics

• Systematic definition of operational semantics

– Specify the transitions in a syntax oriented manner
using the inductive nature of program syntax

• Example

– The state transition for e1 + e2 is described using the
transitions for e1 and the transition for e2

• Plan

– SOS of a simple subset of JavaScript

– Summarize scope, prototype lookup in JavaScript

Simplified subset of JavaScript

• Three syntactic categories
– Arith expressions : a ::= n | X | a + a | a * a
– Bool expressions : b ::= a<=a | not b | b and b
– Statements : s ::= skip | x = a | s; s |
 if b then s else s | while b do s

• States
– Pair S = t ,
– t : syntax being evaluated/executed
– : abstract description of memory, in this subset a
 function from variable names to values, i.e.,
 : Var Values

Sample operational rules

Sample rules

Form of SOS

Conditional and loops

Context Sensitive Rules

Summary of Operational Semantics

• Abstract definition program execution
– Uses some characterization of program state that

reflects the power and expressiveness of language

• JavaScript operational semantics
– Based on ECMA Standard
– Lengthy: 70 pages of rules (ascii)
– Precise definition of program execution, in detail
– Can prove properties of JavaScript programs

• Progress: Evaluation only halts with expected set of values
• Reachability: precise definition of “garbage” for JS programs
• Basis for proofs of security mechanisms, variable renaming,

…

Imperative vs Functional Programs

• Denotational semantics
– The meaning of an imperative program is a

function from states to states.

– We can write this as a pure functional program
that operates on data structures that represent
states

• Operational semantics
– Evaluation v and execution s relations are

functions from states to states

– We could define these functions in Haskell

 In principle, every imperative program can be written as a

pure functional program (in another language)

What is a functional language ?

• “No side effects”

• OK, we have side effects, but we also have
higher-order functions…

 We will use pure functional language to mean

 “a language with functions, but without side effects

 or other imperative features.”

No-side-effects language test

 Within the scope of specific declarations of x1,x2, …, xn, all
occurrences of an expression e containing only variables x1,x2, …,
xn, must have the same value.

• Example
begin

 integer x=3; integer y=4;

 5*(x+y)-3

 … // no new declaration of x or y //

 4*(x+y)+1

end

?

Example languages

• Haskell

• Pure JavaScript

function (){…}, f(e), ==, [x,y,…], first […], rest […], …

• Impure JavaScript

 x=1; … ; x=2; …

• Common procedural languages are not
functional

– Pascal, C, Ada, C++, Java, Modula, …

 Backus’ Turing Award

• John Backus was designer of Fortran, BNF, etc.

• Turing Award in 1977

• Turing Award Lecture

– Functional prog better than imperative programming

– Easier to reason about functional programs

– More efficient due to parallelism

– Algebraic laws

Reason about programs

Optimizing compilers

http://www.cs.cmu.edu/~crary/819-f09/Backus78.pdf

http://www.cs.cmu.edu/~crary/819-f09/Backus78.pdf
http://www.cs.cmu.edu/~crary/819-f09/Backus78.pdf
http://www.cs.cmu.edu/~crary/819-f09/Backus78.pdf

Reasoning about programs

• To prove a program correct,
– must consider everything a program depends on

• In functional programs,
– dependence on any data structure is explicit

• Therefore,
– easier to reason about functional programs

• Do you believe this?
– This thesis must be tested in practice
– Many who prove properties of programs believe this
– Not many people really prove their code correct

Haskell Quicksort

• Very succinct program
qsort [] = []
qsort (x:xs) = qsort elts_lt_x ++ [x]
 ++ qsort elts_greq_x
 where elts_lt_x = [y | y <- xs, y < x]
 elts_greq_x = [y | y <- xs, y >= x]

• This is the whole thing
– No assignment – just write expression for sorted list
– No array indices, no pointers, no memory

management, …
– Disclaimer: does not sort in place

Compare: C quicksort

qsort(a, lo, hi) int a[], hi, lo;

{ int h, l, p, t;

 if (lo < hi) {

 l = lo; h = hi; p = a[hi];

 do {

 while ((l < h) && (a[l] <= p)) l = l+1;

 while ((h > l) && (a[h] >= p)) h = h-1;

 if (l < h) { t = a[l]; a[l] = a[h]; a[h] = t; }

 } while (l < h);

 t = a[l]; a[l] = a[hi]; a[hi] = t;

 qsort(a, lo, l-1);

 qsort(a, l+1, hi);

 }

}

Interesting case study

• Naval Center programming experiment
– Separate teams worked on separate languages

– Surprising differences

 Some programs were incomplete or did not run

– Many evaluators didn’t understand, when shown the code, that the
Haskell program was complete. They thought it was a high level
partial specification.

Hudak and Jones, Haskell vs Ada vs …,
Yale University Tech Report, 1994

Disadvantages of Functional Prog

Functional programs often less efficient. Why?

Change 3rd element of list x to y

(cons (car x) (cons (cadr x) (cons y (cdddr x))))

– Build new cells for first three elements of list

(rplaca (cddr x) y)

– Change contents of third cell of list directly

 However, many optimizations are possible

A B C D

Von Neumann bottleneck

• Von Neumann
– Mathematician responsible for idea of stored

program

• Von Neumann Bottleneck
– Backus’ term for limitation in CPU-memory transfer

• Related to sequentiality of imperative languages
– Code must be executed in specific order

function f(x) { if (x<y) then y = x; else x = y; }

g(f(i), f(j));

Eliminating VN Bottleneck

• No side effects
– Evaluate subexpressions independently
– Example

• function f(x) { return x<y ? 1 : 2; }
• g(f(i), f(j), f(k), …);

• Does this work in practice? Good idea but ...
– Too much parallelism
– Little help in allocation of processors to processes
– ...
– David Shaw promised to build the non-Von ...

• Effective, easy concurrency is a hard problem

Summary

• Parsing

– The “real” program is the disambiguated parse tree

• Lambda Calculus

– Notation for functions, free and bound variables

– Calculate using substitution, rename to avoid capture

• Operational semantics

• Pure functional program

– May be easier to reason about

– Parallelism: easy to find, too much of a good thing

Reading

• Textbook
– Section 4.1.1, Structure of a simple compiler

– Section 4.2, Lambda calculus, except
• Skip “Reduction and Fixed Points” – too much detail

– Section 4.4, Functional and imperative languages

• Additional paper (link on web site)

– “An Operational Semantics for JavaScript”
• More detail than need, but provided for reference

• Try to read up through section 2.3 for the main ideas

• Do not worry about details beyond lecture or homework

– JavaScript Standard: http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-262.pdf

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf

