
Introduction to Haskell

(slides modified from those created by John
Mitchell and Kathleen Fisher)

CS 242 Autumn 2012

Language Evolution

Algol 60

Algol 68

ML Modula

Lisp

Many others: Algol 58, Algol W, Scheme, EL1, Mesa (PARC), Modula-2,

Oberon, Modula-3, Fortran, Ada, Perl, Python, Ruby, C#, Javascript, F#…

Pascal

Haskell

C

C++

Smalltalk

Java

C Programming Language

• Statically typed, general purpose systems programming
language

• Computational model reflects underlying machine
• Relationship between arrays and pointers

– An array is treated as a pointer to first element
– E1[E2] is equivalent to ptr dereference: *((E1)+(E2))
– Pointer arithmetic is not common in other languages

• Not statically type safe
– If variable has type float, no guarantee value is floating pt

• Ritchie quote
– “C is quirky, flawed, and a tremendous success”

Dennis Ritchie, ACM Turing Award for Unix

ML programming language

• Statically typed, general-purpose programming language
– “Meta-Language” of the LCF theorem proving system

• Type safe, with formal semantics
• Compiled language, but intended for interactive use
• Combination of Lisp and Algol-like features

– Expression-oriented
– Higher-order functions
– Garbage collection
– Abstract data types
– Module system
– Exceptions

• Used in printed textbook as example language

Robin Milner, ACM Turing-Award for ML, LCF Theorem Prover, …

OCaml

Haskell

• Haskell programming language is
– Similar to ML: general-purpose, strongly typed, higher-order,

functional, supports type inference, interactive and compiled use

– Different from ML: lazy evaluation, purely functional core, rapidly
evolving type system

• Designed by committee in 80’s and 90’s to unify research
efforts in lazy languages
– Haskell 1.0 in 1990, Haskell ‘98, Haskell’ ongoing

– “A History of Haskell: Being Lazy with Class” HOPL 3

Paul Hudak

John Hughes

Simon

Peyton Jones

Phil Wadler

Haskell B Curry

• Combinatory logic
– Influenced by Russell and Whitehead
– Developed combinators to represent

substitution
– Alternate form of lambda calculus that has

been used in implementation structures

• Type inference
– Devised by Curry and Feys
– Extended by Hindley, Milner

Although “Currying” and “Curried functions” are
named after Curry, the idea was invented by
Schoenfinkel earlier

Why Study Haskell?

• Good vehicle for studying language concepts
• Types and type checking

– General issues in static and dynamic typing
– Type inference
– Parametric polymorphism
– Ad hoc polymorphism (aka, overloading)

• Control
– Lazy vs. eager evaluation
– Tail recursion and continuations
– Precise management of effects

Why Study Haskell?

• Functional programming will make you think
differently about programming.
– Mainstream languages are all about state

– Functional programming is all about values

• Haskell is “cutting edge”
– A lot of current research is done using Haskell

– Rise of multi-core, parallel programming likely to
make minimizing state much more important

• New ideas can help make you a better
programmer, in any language

Most Research Languages

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The quick death

G
e
e
k
s

P
ra

c
ti
ti
o
n
e
rs

Successful Research Languages

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The slow death

G
e
e
k
s

P
ra

c
ti
ti
o
n
e
rs

C++, Java, Perl, Ruby

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The complete

absence of death

G
e
e
k
s

P
ra

c
ti
ti
o
n
e
rs

Threshold of immortality

Committee languages

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The slow death

G
e
e
k
s

P
ra

c
ti
ti
o
n
e
rs

Haskell

1,000,000

1

100

10,000

The second life?

“Learning Haskell is a great way of

training yourself to think functionally so

you are ready to take full advantage of

C# 3.0 when it comes out”

(blog Apr 2007)

“I'm already looking at coding

problems and my mental

perspective is now shifting

back and forth between purely

OO and more FP styled

solutions”

(blog Mar 2007)

1990 1995 2000 2005 2010

G
e
e
k
s

P
ra

c
ti
ti
o
n
e
rs

https://www.haskell.org/platform/

Function Types in Haskell

In Haskell, f :: A B means for every x A,

 f(x) =

In words, “if f(x) terminates, then f(x) B.”

In ML, functions with type A B can throw an
exception or have other effects, but not in Haskell

some element y = f(x) B
run forever

Higher-Order Functions

• Functions that take other functions as arguments or return
as a result are higher-order functions.

• Common Examples:
– Map: applies argument function to each element in a collection.
– Reduce: takes a collection, an initial value, and a function, and

combines the elements in the collection according to the
function.

• Google uses Map/Reduce to parallelize and distribute
massive data processing tasks.

 (Dean & Ghemawat, OSDI 2004)

list = [1,2,3]

r = foldl (\accumulator i -> i + accumulator) 0 list

http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/mapreduce.html

Basic Overview of Haskell

• Interactive Interpreter (ghci): read-eval-print

– ghci infers type before compiling or executing

– Type system does not allow casts or other loopholes!

• Examples

Prelude> (5+3)-2

6

it :: Integer

Prelude> if 5>3 then “Harry” else “Hermione”

“Harry”

it :: [Char] -- String is equivalent to [Char]

Prelude> 5==4

False

it :: Bool

Overview by Type

• Booleans

• Integers

• Strings

• Floats

Haskell Libraries

True, False :: Bool

if … then … else … --types must match

0, 1, 2, … :: Integer

+, * , … :: Integer -> Integer -> Integer

“Ron Weasley”

1.0, 2, 3.14159, … --type classes to disambiguate

http://haskell.org/ghc/docs/latest/html/libraries/

Simple Compound Types

 Tuples

 Lists

 Records

(4, 5, “Griffendor”) :: (Integer, Integer, String)

[] :: [a] -- polymorphic type

1 : [2, 3, 4] :: [Integer] -- infix cons notation

data Person = Person {firstName :: String,

 lastName :: String}

hg = Person { firstName = “Hermione”,

 lastName = “Granger”}

Patterns and Declarations

• Patterns can be used in place of variables
 <pat> ::= <var> | <tuple> | <cons> | <record> …

• Value declarations
– General form: <pat> = <exp>

– Examples

– Local declarations
•

myTuple = (“Flitwick”, “Snape”)

(x,y) = myTuple

myList = [1, 2, 3, 4]

z:zs = myList

let (x,y) = (2, “Snape”) in x * 4

Functions and Pattern Matching

• Anonymous function

• Function declaration form

• Examples

\x -> x+1 --like Lisp lambda, function (…) in JS

<name> <pat1> = <exp1>

<name> <pat2> = <exp2> …

<name> <patn> = <expn> …

f (x,y) = x+y --argument must match pattern (x,y)

length [] = 0

length (x:s) = 1 + length(s)

Map Function on Lists

• Apply function to every element of list

• Compare to Lisp

map f [] = []

map f (x:xs) = f x : map f xs

(define map

 (lambda (f xs)

 (if (eq? xs ()) ()

 (cons (f (car xs)) (map f (cdr xs)))

)))

map (\x -> x+1) [1,2,3] [2,3,4]

More Functions on Lists

• Append lists
–

–

• Reverse a list
–

–

• Questions
– How efficient is reverse?

– Can it be done with only one pass through list?

append ([], ys) = ys

append (x:xs, ys) = x : append (xs, ys)

reverse [] = []

reverse (x:xs) = (reverse xs) ++ [x]

More Efficient Reverse

1

2

3 1

2

3 1

2

3 1

2

3

reverse xs =

 let rev ([], accum) = accum

 rev (y:ys, accum) = rev (ys, y:accum)

 in rev (xs, [])

List Comprehensions

• Notation for constructing new lists from old:

• Similar to “set comprehension”
 { x | x Odd x > 6 }

myData = [1,2,3,4,5,6,7]

twiceData = [2 * x | x <- myData]

-- [2,4,6,8,10,12,14]

twiceEvenData = [2 * x| x <- myData, x `mod` 2 == 0]

-- [4,8,12]

Datatype Declarations

• Examples
–

elements are Red, Yellow, Blue

elements are Atom “A”, Atom “B”, …, Number 0, ...

elements are Nil, Cons(Atom “A”, Nil), …

 Cons(Number 2, Cons(Atom(“Bill”), Nil)), ...

• General form
–

– Type name and constructors must be Capitalized.

data Color = Red | Yellow | Blue

data Atom = Atom String | Number Int

data List = Nil | Cons (Atom, List)

data <name> = <clause> | … | <clause>

<clause> ::= <constructor> | <contructor> <type>

Datatypes and Pattern Matching

 Recursively defined data structure

 Recursive function

4

5

7 6

3

2 1

data Tree = Leaf Int | Node (Int, Tree, Tree)

Node(4, Node(3, Leaf 1, Leaf 2),

 Node(5, Leaf 6, Leaf 7))

sum (Leaf n) = n

sum (Node(n,t1,t2)) = n + sum(t1) + sum(t2)

Example: Evaluating Expressions

• Define datatype of expressions

 write (x+3)+ y as Plus(Plus(Var 1, Const 3), Var 2)

• Evaluation function

• Examples

data Exp = Var Int | Const Int | Plus (Exp, Exp)

ev(Var n) = Var n

ev(Const n) = Const n

ev(Plus(e1,e2)) = …

ev(Plus(Const 3, Const 2)) Const 5

ev(Plus(Var 1, Plus(Const 2, Const 3)))

 Plus(Var 1, Const 5)

Case Expression

 Datatype

 Case expression

Indentation matters in case statements in Haskell.

data Exp = Var Int | Const Int | Plus (Exp, Exp)

case e of

 Var n -> …

 Const n -> …

 Plus(e1,e2) -> …

Evaluation by Cases

data Exp = Var Int | Const Int | Plus (Exp, Exp)

ev (Var n) = Var n

ev (Const n) = Const n

ev (Plus (e1,e2)) =

 case ev e1 of
 Var n -> Plus(Var n, ev e2)

 Const n -> case ev e2 of

 Var m -> Plus(Const n, Var m)

 Const m -> Const (n+m)

 Plus(e3,e4) -> Plus (Const n,

 Plus (e3, e4))

 Plus(e3, e4) -> Plus(Plus (e3, e4), ev e2)

Laziness
 Haskell is a lazy language

 Functions and data constructors don’t
evaluate their arguments until they need
them

 Programmers can write control-flow operators
that have to be built-in in eager languages

cond :: Bool -> a -> a -> a

cond True t e = t

cond False t e = e

(||) :: Bool -> Bool -> Bool

True || x = True

False || x = x

Short-

circuiting

“or”

Using Laziness

isSubString :: String -> String -> Bool

x `isSubString` s = or [x `isPrefixOf` t

 | t <- suffixes s]

suffixes:: String -> [String]

-- All suffixes of s

suffixes[] = [[]]

suffixes(x:xs) = (x:xs) : suffixes xs

or :: [Bool] -> Bool

-- (or bs) returns True if any of the bs is True

or [] = False

or (b:bs) = b || or bs

type String = [Char]

A Lazy Paradigm

• Generate all solutions (an enormous tree)

• Walk the tree to find the solution you want

nextMove :: Board -> Move

nextMove b = selectMove allMoves

 where

 allMoves = allMovesFrom b

A gigantic (perhaps infinite)

tree of possible moves

Core Haskell

• Basic Types

– Unit

– Booleans

– Integers

– Strings

– Reals

– Tuples

– Lists

– Records

• Patterns

• Declarations

• Functions

• Polymorphism

• Type declarations

• Type Classes

• Monads

• Exceptions

Running Haskell

• Look for instructions on web site

– Or use ghci from corn or myth

• Or, download: http://haskell.org/ghc

• Interactive:

– ghci intro.hs

• Compiled:

– ghc –make HaskellIntro.hs

Demo ghci

http://haskell.org/ghc

Testing

• It’s good to write tests as you write code

• E.g. reverse undoes itself, etc.

reverse xs =

 let rev ([], z) = z

 rev (y:ys, z) = rev(ys, y:z)

 in rev(xs, [])

-- Write properties in Haskell

type TS = [Int] -- Test at this type

prop_RevRev :: TS -> Bool

prop_RevRev ls = reverse (reverse ls) == ls

Prelude Test.QuickCheck> :t quickCheck

quickCheck :: Testable prop => prop -> IO ()

Test Interactively

bash$ ghci intro.hs

Prelude> :m +Test.QuickCheck

Prelude Test.QuickCheck> quickCheck prop_RevRev

+++ OK, passed 100 tests

Test.QuickCheck is

simply a Haskell library

(not a “tool”)

...with a strange-

looking type

Demo QuickCheck

QuickCheck

• Generate random input based on type
– Generators for values of type a has type Gen a
– Have generators for many types

• Conditional properties
– Have form <condition> ==> <property>
– Example:
 ordered xs = and (zipWith (<=) xs (drop 1 xs))
 insert x xs = takeWhile (<x) xs++[x]++dropWhile (<x) xs
 prop_Insert x xs =
 ordered xs ==> ordered (insert x xs)
 where types = x::Int

QuickCheck

• QuickCheck output
– When property succeeds:
 quickCheck prop_RevRev OK, passed 100 tests.
– When a property fails, QuickCheck displays a counter-example.
 prop_RevId xs = reverse xs == xs where types = xs::[Int]
 quickCheck prop_RevId
 Falsifiable, after 1 tests: [-3,15]

• Conditional testing
– Discards test cases which do not satisfy the condition.
– Test case generation continues until

• 100 cases which do satisfy the condition have been found, or
• until an overall limit on the number of test cases is reached (to

avoid looping if the condition never holds).

See :
http://www.haskell.org/haskellwiki/Introduction_to_QuickCheck

http://www.haskell.org/haskellwiki/Introduction_to_QuickCheck

Things to Notice

No side effects. At all.

 A call to reverse returns a new list; the old one
is unaffected.

 A variable ‘l’ stands for an immutable value,
not for a location whose value can change.

 Laziness forces this purity.

reverse:: [w] -> [w]

prop_RevRev l = reverse(reverse l) == l

Things to Notice

• Purity makes the interface explicit.

– Takes a list, and returns a list; that’s all.

– Takes a list; may modify it; may modify other
persistent state; may do I/O.

reverse:: [w] -> [w] -- Haskell

void reverse(list l) /* C */

Things to Notice

• Pure functions are easy to test.

• In an imperative or OO language, you have to

– set up the state of the object and the external state it
reads or writes

– make the call

– inspect the state of the object and the external state

– perhaps copy part of the object or global state, so that
you can use it in the post condition

prop_RevRev l = reverse(reverse l) == l

Things to Notice

Types are everywhere.

• In Haskell, types express high-level design, in
the same way that UML diagrams do, with
the advantage that the type signatures are
machine-checked.

• Types are (almost always) optional: type
inference fills them in if you leave them out.

reverse:: [w] -> [w]

More Info: haskell.org

• The Haskell wikibook
– http://en.wikibooks.org/wiki/Haskell

• All the Haskell bloggers, sorted by topic
– http://haskell.org/haskellwiki/Blog_articles

• Collected research papers about Haskell
– http://haskell.org/haskellwiki/Research_papers

• Wiki articles, by category
– http://haskell.org/haskellwiki/Category:Haskell

• Books and tutorials
– http://haskell.org/haskellwiki/Books_and_tutorials
– http://book.realworldhaskell.org

http://en.wikibooks.org/wiki/Haskell
http://haskell.org/haskellwiki/Blog_articles
http://haskell.org/haskellwiki/Research_papers
http://haskell.org/haskellwiki/Category:Haskell
http://haskell.org/haskellwiki/Books_and_tutorials
http://book.realworldhaskell.org/

A list of functions that make up the
Prelude package in Haskell

• http://www.haskell.org/ghc/docs/latest/html/
libraries/base/Prelude.html

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html
http://www.haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html

	HaskellPlatform.pdf
	Slide Number 1

