
Foundations of Programming
Languages – Course Overview

Acknowledgments: some slides taken or adapted from lecture notes of Stanford CS242
https://courseware.stanford.edu/pg/courses/317431/

What are programming languages for

• Communication between programmers and HW
– Model the real world
– Model computation & communication

• One of the most fundamental area of computer science

• Examples
– assembly, imperative (e.g., C), functional, OO, logical, web

(e.g., JavaScript), domain-specific languages

• Still a very active field, both in academia and industry
– New languages: F#, Go, Scala, …

POPL 2017 Invited Talk on Rust

What do we care
• Easy to use

– Language design:
good syntax, clear semantics, high-abstraction level

– Enhance software productivity
• e.g., domain specific languages (DSL)

• Better performance
– Language implementations:

compilers, runtime (GC), parallelization

• Better software quality (reliability and security)
– Type safety, static/dynamic checking, verification

• Theoretical foundations
– Semantics, verification, etc.

• Connections with other related fields: logic, computation theory, etc.

Language goals and trade-offs

Why should you take this course

• Programming language concepts
– A language is a “conceptual universe” (Perlis)

• OO vs. Functional, for instance
– Distinguish key properties from superficial details

• Better programming skills
– Write more efficient and reliable code
– Be prepared for new PL methods, paradigms, tools

• Learn to design your own languages
– Domain-specific languages (e.g., big data, machine

learning, networking, robotics)

Some PL Research Goals

• Design and Implementation
– Easy to use (design), efficient executable code (impl)
– Multicore/Parallel/Distributed programming
– Flaw detection: static, dynamic, etc.
– Related fields: OS, architecture, domain specific fields

• Principles and Theories
– Semantics and Properties (e.g. expressiveness) of

Programming Languages
– Principles and theories for safety/security/correctness
– Program analysis and verification
– Related fields: logic and algebra, computation theory

Major Conferences

• Principles of Programming Languages (POPL)
• Programming Language Design and Implementation

(PLDI)
• Object-Oriented Programming, Systems, Languages &

Applications (OOPSLA)
• Principles and Practice of Parallel Programming (PPoPP)
• International Conferences on Functional Programming

(ICFP)
• Architectural Support for Programming Languages and

Operating Systems (ASPLOS)
• Languages, Compilers and Tools for Embedded Systems

(LCTES)

Major Conferences (2)

• Related:
– Logic in Computer Science (LICS)
– Computer Aided Verification (CAV)

Temporary Syllabus

• Introduction
• Haskell
• Foundations: lambda calculus, opr. semantics
• Scope and stack storage allocation
• Types and type checking/inference
• Parametric polymorphism, type classes (ad-hoc

polymorphism)
• Monads
• Exceptions and continuations

Temporary Syllabus (2)

• Modularity
• Objects
• Prototypes, classes, inheritance
• Object types and subtyping
• Implementation structures
• Templates and generics
• Concurrency & Atomicity
• Advanced topics

