Foundations of Programming
Languages — Course Overview

Acknowledgments: some slides taken or adapted from lecture notes of Stanford CS5242
https://courseware.stanford.edu/pg/courses/317431/



What are programming languages for

Communication between programmers and HW
— Model the real world
— Model computation & communication

One of the most fundamental area of computer science

Examples

— assembly, imperative (e.g., C), functional, OO, logical, web
(e.g., JavaScript), domain-specific languages

Still a very active field, both in academia and industry
— New languages: F#, Go, Scala, ...



POPL 2017 Invited Talk on Rust

A POPL 2017 (series) / #AA POPL 2017 /

Rust: from POPL to practice

Track
When

Abstract

Session Program

POPL 2017
Fri 20 Jan 2017 09:05 - 10:00 at Auditorium - Invited speaker Chair(s): Giuseppe Castagna

In 2015, a language based fundamentally on substructural typing—Rust-hit its 1.0 release, and less than a year
later it has been put into production use in a number of tech companies, including some household names. The
language has started a trend, with several other mainstream languages, including C++ and Swift, in the early
stages of incorporating ideas about ownership. How did this come about?

Rust’s core focus is safe systems programming. It does not require a runtime system or garbage collector, but
guarantees memory safety. It does not stipulate any particular style of concurrent programming, but instead
provides the tools needed to guarantee data race freedom even when doing low-level shared-state concurrency.
It allows you to build up high-level abstractions without paying a tax; its compilation model ensures that the
abstractions boil away. Aaron Turon

These benefits derive from two core aspects of Rust: its ownership system (based on substructural typing) and MPI-SWS
its trait system (a descendant of Haskell's typeclasses). The talk will cover these two pillars of Rust design, with

particular attention to the key innovations that make the language usable at scale. It will highlight the implications

for concurrency, where Rust provides a unique perspective. It will also touch on aspects of Rust’'s development

that tend to get less attention within the POPL community: Rust’s governance and open development process,

and design considerations around language and library evolution. Finally, it will mention a few of the myriad open

research questions around Rust.

Fri 20 Jan

09:05 - 10:00: POPL - Invited speaker at Auditorium
Chair(s): Giuseppe Castagna

09:05 - 10:00 Rust: from POPL to practice
Talk Aaron Turon




What do we care

Easy to use

— Language design:
good syntax, clear semantics, high-abstraction level

— Enhance software productivity
* e.g., domain specific languages (DSL)

Better performance

— Language implementations:
compilers, runtime (GC), parallelization

Better software quality (reliability and security)
— Type safety, static/dynamic checking, verification

Theoretical foundations

— Semantics, verification, etc.
* Connections with other related fields: logic, computation theory, etc.



Language goals and trade-offs

Architect Programmer

Programming e
Language Compiler,
Runtime
environment

Diagnostic
Tools



Why should you take this course

* Programming language concepts

— A language is a “conceptual universe” (Perlis)
* OO vs. Functional, for instance

— Distinguish key properties from superficial details
* Better programming skills

— Write more efficient and reliable code

— Be prepared for new PL methods, paradigms, tools
* Learn to design your own languages

— Domain-specific languages (e.g., big data, machine
learning, networking, robotics)



Some PL Research Goals

* Desigh and Implementation
— Easy to use (design), efficient executable code (impl)
— Multicore/Parallel/Distributed programming
— Flaw detection: static, dynamic, etc.
— Related fields: OS, architecture, domain specific fields

* Principles and Theories

— Semantics and Properties (e.g. expressiveness) of
Programming Languages

— Principles and theories for safety/security/correctness
— Program analysis and verification
— Related fields: logic and algebra, computation theory



Major Conferences

Principles of Programming Languages (POPL)

Programming Language Design and Implementation
(PLDI)

Object-Oriented Programming, Systems, Languages &
Applications (OOPSLA)

Principles and Practice of Parallel Programming (PPoPP)

International Conferences on Functional Programming
(ICFP)

Architectural Support for Programming Languages and
Operating Systems (ASPLOS)

Languages, Compilers and Tools for Embedded Systems
(LCTES)



Major Conferences (2)

* Related:
— Logic in Computer Science (LICS)
— Computer Aided Verification (CAV)



Temporary Syllabus

ntroduction

Haskell

~oundations: lambda calculus, opr. semantics
Scope and stack storage allocation

Types and type checking/inference

Parametric polymorphism, type classes (ad-hoc
polymorphism)

Monads
Exceptions and continuations



Temporary Syllabus (2)

Modularity

Objects

Prototypes, classes, inheritance
Object types and subtyping
Implementation structures
Templates and generics
Concurrency & Atomicity
Advanced topics



