
Qubit Recycling Revisited
Extended Version

HANRU JIANG, Beijing Institute of Mathematical Sciences and Applications, China

Reducing the width of quantum circuits is crucial due to limited number of qubits in quantum devices. This

paper revisit an optimization strategy known as qubit recycling (alternatively wire-recycling or measurement-

and-reset), which leverages gate commutativity to reuse discarded qubits, thereby reducing circuit width.

We introduce qubit dependency graphs (QDGs) as a key abstraction for this optimization. With QDG, we

isolate the computationally demanding components, and observe that qubit recycling is essentially a matrix

triangularization problem. Based on QDG and this observation, we study qubit recycling with a focus on

complexity, algorithmic, and verification aspects. Firstly, we establish qubit recycling’s NP-hardness through

reduction fromWilf’s question, another matrix triangularization problem. Secondly, we propose a QDG-guided

solver featuring multiple heuristic options for effective qubit recycling. Benchmark tests conducted on RevLib

illustrate our solver’s superior or comparable performance to existing alternatives. Notably, it achieves optimal

solutions for the majority of circuits. Finally, we develop a certified qubit recycler that integrates verification

and validation techniques, with its correctness proof mechanized in Coq.

CCS Concepts: • Hardware→ Quantum computation; Circuit optimization; • Software and its engi-
neering→ Software verification.

Additional Key Words and Phrases: Quantum Circuit Optimization, Complexity, Certified Compilation

1 INTRODUCTION
Reducing the cost of a quantum circuit is crucial, particularly for near-term quantum computers

with limited computational resources [Preskill 2018]. One commonly used metric for assessing cost

is the circuit width, which corresponds to the number of qubits used in a quantum circuit. In fault-

tolerant quantum computing, where the overhead of a logical qubit using quantum error-correction

is substantial [Fowler et al. 2012], circuit width becomes particularly important.

Among the various approaches to minimizing circuit width, qubit recycling, also known as

wire recycling or reclaiming qubit via measurement-and-reset, has been found to be effective and

intuitive. Analytic analysis [DeCross et al. 2023] on well-structured circuit families showcased

its capacity to significantly reduce circuit width, sometimes exponentially or to a constant size.

Empirical evaluation [DeCross et al. 2023; Hua et al. 2023; Paler et al. 2016] further indicated that

qubit recycling can achieve reductions in circuit width up to 80–90%.Moreover, recent research [Hua

et al. 2023] illustrated that leveraging mid-circuit measurement for qubit recycling might enhance

fidelity in specific circuits executed on real quantum hardware.

The idea behind qubit recycling is that once a qubit is measured and discarded, it becomes

disentangled from the other qubits and can be reused as a fresh qubit by resetting it. Qubit recycling

further leverages the commutativity of local quantum operations to create more opportunities for

qubit reuse, allowing for earlier measurements or deferring allocation.

𝐴
▷

𝐵
◁

=⇒ 𝐴
▷

𝐵
◁

=⇒ 𝐴
▷◁

𝐵

Author’s address: Hanru Jiang, Beijing Institute of Mathematical Sciences and Applications, Beijing, China, hanru@bimsa.cn.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0002-5965-1209
https://orcid.org/0000-0002-5965-1209
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

2 Hanru Jiang

The above is an example illustrating a qubit recycling procedure, which rewrites the left most

circuit into the right most one. In each circuit, a horizontal line represents a qubit, a box represents

a quantum gate applied to the qubits it covers, and the gates are applied from left to right. Starting

from the left-most circuit, we first postpone the allocation (denoted by ◁) and bring forward the

measurement (denoted by ▷). When the measurement is earlier than the allocation, we reuse the

top qubit as the bottom one. As a result, the circuit width is reduced by one.

Despite its efficacy, qubit recycling remains an underexplored topic with several fundamental

questions yet to be answered, including:

(1) What is the computational complexity of minimizing circuit width using qubit recycling?

Previous works [DeCross et al. 2023; Hua et al. 2023; Paler et al. 2016] develop (exponential-

time) exact or heuristic-based algorithms for qubit recycling. However, the intrinsic difficulty

of this problem remains unclear.

(2) How can we ensure the correctness of a qubit recycler? Existing approaches on verified

compilation for quantum programs [Hietala et al. 2021; Tao et al. 2022] do not directly apply

to qubit recycling. These approaches primarily concentrate on rewriting-based optimizations

that preserve circuit width, while qubit recycling aims to reduce circuit width.

To better understand qubit recycling and address these questions, it is essential to have a problem

abstraction that isolates the computationally intensive part from simpler circuit rewritings based on

gate commutativity. With this in mind, we revisit qubit recycling and address the aforementioned

questions. The contribution includes:

• We identify computational dependencies between qubits as the key factor in qubit recycling

and formalize these dependencies using qubit dependency graphs (QDGs). A QDG concisely

captures the necessary information to determine valid qubit recycling strategies, specifying

which qubit can be reused by another. With the matrix representation of QDGs, we observe

that qubit recycling is essentially amatrix triangularization problem. This observation proves

valuable in studying complexity, algorithm design, and verification of qubit recyclers.

• We prove that qubit recycling is NP-hard. The proof is based on a reduction from Wilf’s

question, another triangularization problem which is known to be NP-complete.

• Based on the structure of the triangularization problem, we develop an efficient solver featur-

ingmultiple heuristics. To evaluate the optimality of the solutions, we employ SCIP [Bolusani

et al. 2024] to solve the original problem, or provide an estimated upper-bound on the size of

optimal solutions in case where finding optimal solutions is not feasible. Evaluation on the

RevLib [Wille et al. 2008] benchmark shows that our solver consistently yields equally good

or superior solutions when compared to existing methods, and achieves optimal solutions

for the majority of the circuits.

• We formalize a weaker correctness criterion for quantum circuit optimizations, allowing

for qubit renaming and reuse. To support dynamic qubit allocation and discard, our seman-

tics decouple qubit identity from their physical location by explicitly incorporating I/O

qubits in the circuit. Our correctness formulation is transitive and congruent to sequential

composition, facilitating modular verification of optimization passes.

• We propose a certified qubit recycler design that integrates compiler verification and valida-

tion techniques. This recycler comprises an untrusted solver handling the computationally

intensive task of finding recycling strategies, and a verified circuit rewriter which also

validates the recycling strategy. The validation process aligns with part of the circuit trans-

formations, namely topological sorting. This is the point where we integrate verification

and validation in a single module. This approach avoids the need to individually verify the

solver, and ensures our proof is resilient to potential future updates to the solver.

Qubit Recycling Revisited 3

• We implement the certified qubit recycler in Coq. Byproducts of the Coq development

include a verified Kahn’s algorithm for topological sorting, and a version of the coherence

theorem for symmetric monoidal categories.

This work focuses on qubit reuse independent of considerations of the architecture of a quantum

computer. In addition, this work focuses solely on qubit reuse through topological deformation,

without considering other non-trivial semantic-based circuit rewritings such as CNOT cancellations.

Outline. Sec. 2 overviews the main results. Sec.3 presents the necessary language and problem

settings. Subsequently, Sec.4 formalizes QDGs, and Sec.5 proves the NP-hardness of qubit recycling.

We then proceed to develop the certified qubit recycler in Sec.6. Finally, we present and evaluate

our algorithms and ILP model for qubit recycling in Sec. 7, and discuss related work in Sec.8.

2 INFORMAL DEVELOPMENT
In this section, we first briefly overview qubit recycling (Sec.2.1), then outline the challenges

associated with addressing the questions raised in Sec.1 and present our approaches to tackle them

(Sec.2.2). Throughout this section, we use Fig.1 as a running example.

0 • • •
1 ◁ ▷
2 ◁ ▷
3 ◁

(a) Input circuit.

• • •
◁ ▷

◁ ▷

◁

(b) Topological deformation.

• • •
◁ ▷ ◁ ▷ ◁

(c) Renaming and reusing.

input 0 △

𝐶𝑋

▽

𝐶𝑋

△

▽

𝐶𝑋

△

output 0, 3

(d) DAG repr. of Fig. 1a.

Fig. 1. A running example of qubit recycling.

2.1 Background:Quantum Circuits and theQubit Recycling Problem
Quantum circuits. Quantum programs are commonly represented using quantum circuits, which

describe a sequence of quantum operations or gates. For instance, Fig.1a is a 4-qubit quantum circuit.

Each horizontal line in the circuit corresponds to a qubit, numbered as 0, 1, 2, and 3. Quantum

gates are applied from left to right. A ◁ symbol represents the allocation of the qubit, while a ▷
symbol represents a discard gate. The discard gate effectively measures the qubit and discards the

measurement result. A qubit used without allocation (e.g, qubit 0) is considered an input qubit, while

a qubit lacking a discard gate (e.g. qubit 0 and 3) is referred to as output qubit. Input and output

qubits may differ. For unitary gates, we consider only arbitrary 2-qubit gates for now. The gate

used in Fig.1, is the CX gate, which is an arbitrary and irrelevant choice. It may help understanding

if we temporarily forget the semantics of CX . In Fig.1, the CX gate is denoted by a vertical line

connecting • and ⊕, indicating the two qubits it operates on. The vertical line has no effect on a

qubit if the crossing is not annotated with • or ⊕.

Semantic preserving circuit transformations. In this section, we do not delve into the semantics of

a circuit but instead introduce two transformations that preserve semantics.

• Topological deformation (Fig. 2a) states that two gates commute if they are applied on disjoint

sets of qubits. Two circuits are considered topologically identical if they are identical modulo

topological deformations.

• Qubit reusing (Fig. 2b) states that if the discard of a qubit precedes the allocation of another

qubit, the former can be reused as the latter. We use the symbol ≈ instead of = to indicate

4 Hanru Jiang

/ 𝐴 /

/ 𝐵 /
=
/ 𝐴 /

/ 𝐵 /

(a) Topological deformation.

Here −/−means one or more qubits.

· · · ▷

◁ · · ·
≈

· · · ▷◁ · · ·

(b) Qubit reusing

Fig. 2. Semantic preserving circuit transformations.

that these circuits are not identical but observably equivalent modulo renaming of I/O

qubits. Qubit reusing leads to a reduction in circuit width by 1.

Qubit recycling. Given a quantum circuit, qubit recycling aims to find a topologically identical

circuit that maximizes qubit reusing, effectively minimizing the circuit width. Consider the circuit

in Fig.1a. One can first reshape the circuit using topological deformation and obtain Fig.1b. Then,

by renaming qubit 3 into 2 and qubit 2 into 1, we obtain Fig.1c with width reduced by 2.

2.2 Challenges and Our Approach
Our goal is to solve the qubit recycling problem correctly and efficiently. Specifically, we aim to

understand the problem’s complexity, develop a solution that runs in a reasonable time, and create

a certified optimizer for qubit recycling. In the following, we outline the challenges we face and

present our approaches to achieving these goals.

2.2.1 The Search Space is Too Large to Analyze. Given a circuit, the set of its topologically identical

circuits becomes unmanageably large as the number of gates increases. This set comprises all

the topological orderings of the circuit’s directed acyclic graph (DAG) representation. Merely

computing the size of this set is #P-complete [Brightwell and Winkler 1991].

For instance, the DAG representation of the circuit Fig. 1a is shown in Fig. 1d. The number of all

its topological orderings is more than 100, which is significantly larger than 4, the qubit count.

Our approach: decomposition using recycling strategies. Our first observation is that by employing

recycling strategies, we can decompose the qubit recycling problem and avoid directly analyzing

the set of topologically identical circuits. A recycling strategy is an injective partial map on qubits,

where each pair 𝑞 ↩→ 𝑞′ in the map denotes that 𝑞′ reuses 𝑞. Every solution to the qubit recycling

problem corresponds to a recycling strategy ↩→, and its size |↩→| represents the number of reused

qubits. Conversely, given a valid ↩→, we can efficiently construct a solution of the same width.

Therefore, to find an optimal solution for qubit recycling, it suffices to:

(i) Find a largest valid recycling strategy ↩→ for the input circuit

(ii) Construct a solution using ↩→ and the input circuit.

Sub-problem (ii) can be solved in linear time, which is essentially topological sorting. Regarding

sub-problem (i), it is evident that the number of all recycling strategies (valid or invalid) is only

relevant to the circuit’s width. In practice, the search space for sub-problem (i) is much smaller

than that for the original qubit recycling problem.

In our example circuit, since there are only 2 discarded qubits and 3 allocated qubits, there

are at most 12 recycling strategies of interest, and only 4 of them are valid: {1 ↩→ 2}, {2 ↩→ 3},
{1 ↩→ 3}, and {1 ↩→ 2, 2 ↩→ 3}. With the largest strategy, a solution for qubit recycling is obtained

by connecting discard of qubit 1 and 2 with allocation of qubit 2 and 3, respectively, then perform a

topological sort on it.

Qubit Recycling Revisited 5

2.2.2 Gap 1: What is a Valid Recycling Strategy? A straightforward answer is a recycling strategy

corresponding to a solution of the original problem, but this requires finding a solution in the first

place. Intuitively, there should be a simpler way: a recycling strategy is essentially a relation over

qubits, it should be possible to check its validity knowing only qubit relationships.

Our approach: We introduce qubit dependency graphs (QDGs) as the key abstraction for analyzing

recycling strategies and verifying their validity. The QDG of a circuit 𝐶 , denoted as QDG(𝐶), is a
directed graph whose vertices represent the qubits in 𝐶 . An edge 𝑞 → 𝑞′ in QDG(𝐶) indicates a
computational dependency, it means that some computations involving 𝑞 must occur before those

involving 𝑞′. Concretely, 𝑞 → 𝑞′ if either (i) there is a path in the DAG representation of𝐶 from the

allocation of 𝑞 to discard of 𝑞′, or (ii) 𝑞 is an input qubit, or 𝑞′ is an output qubit. Such a dependency

prevents reusing 𝑞′ as 𝑞. Notably, each vertex in a QDG has a self-loop.

A recycling strategy ↩→ is valid for 𝐶 turns out to be equivalent to

→↩→ is acyclic.

Here→ is the edges of QDG(𝐶), and→↩→ is a composed graph where 𝑞 →↩→ 𝑞′′ if there exists 𝑞′

such that 𝑞 → 𝑞′ and 𝑞′ ↩→ 𝑞′′. This criteria is intuitively necessary: a cycle in→↩→ means there

is a circular dependency if we are to use this recycling strategy.

1 2

3

0

The QDG of our running example (Fig. 1a) is shown on the right, where

self-loops are omitted for clarity. This QDG hides irrelevant information in the

circuit. It is easy to verify that {1 ↩→ 2, 2 ↩→ 3} is a valid recycling strategy,

while 2 ↩→ 1 is not due to the presence of a cycle 1→ 2 ↩→ 1.

2.2.3 Gap 2: How to Find a Largest Valid Recycling Strategy? Although QDGs provide a more

concise criteria of valid recycling strategies, the set of recycling strategies is still quite large, with

𝑂 (𝑛!) possible injective maps over 𝑛 qubits, and an even larger number of partial injective maps.

Brute-force search becomes unfeasible as the number of qubits grows.

This raises the following natural questions:

(a) Is it possible to efficiently find a largest recycling strategy?

(b) If not, can we find sufficiently good recycling strategies in a reasonable amount of time?

Answering question (a): hardness result. We prove that finding a largest recycling strategy for a

QDG is NP-hard. Our key observation is that finding a largest valid strategy for a QDG is equivalent

to a matrix triangularization problem. Note that a QDG→ and a recycling strategy ↩→ are directed

graphs. Suppose their adjacency matrices are 𝐴 and 𝑅, respectively, then the following holds.

→↩→ is acyclic ⇔ 𝐴𝑅 is nilpotent ⇔ ∃𝑃 . 𝑃𝑇𝐴(𝑅𝑃) is strictly lower triangular. (1)

Here 𝑃 is a permutationmatrix. In particular, when𝑅 is a total injectivemap,𝑅𝑃 is also a permutation

matrix. This equivalent form remind us of another problem: can a square matrix be made lower (or

upper) triangular by independently permuting its rows and columns?

The problem, known as Wilf’s question [Wilf 1997], has been studied extensively in Haddad’s

dissertation [Haddad 1990], and is known to be NP-complete [Fertin et al. 2015]. We prove that

Wilf’s question reduces to qubit recycling problem, demonstrating the latter is NP-hard. The main

difficulty in this reduction is that the QDG of a circuit is not an arbitrary square 0-1 matrix, for

example: it has 1s on its diagonal. The reduction is achieved by appropriately padding a matrix

with 0s and 1s, such that it becomes the QDG of some circuit.

Answering question (b): QDG-based algorithms. Based on the previous observation, we develop

a solver for this NP-hard problem. The key insight for this solver comes from the triangulation

problem: once the permutation 𝑃 in Eq. (1) is given, a recycling strategy 𝑅 with maximal size (that

6 Hanru Jiang

is, the rank of matrix 𝑅) can be computed efficiently by putting 0s to the right-upper corner. The

problem is then reduced to finding an appropriate permutation 𝑃 , which can be done either by a

heuristic, or by exhaustive search.

We demonstrate the procedure of solving 𝑅 given 𝑃 over the adjacency matrix 𝐴 of the QDG of

the circuit in Fig. 1a. The matrix 𝐴 together with the indices of its rows and columns is shown in

Fig. 3a. Suppose we are given a permutation 𝑃𝑇 that maps rows 0123 into 3210, then 𝑃𝑇𝐴 is shown

in Fig. 3b. The solver then try to put the 0s of each row to the right most columns. For example,

starting from the first row (with index 3), we put the two 0s to the right, as shown in Fig. 3c. We

then continue the process with the remaining submatrix with no background color, that is, we

remove the first row, and columns with value 1 in the first row. One more iteration gives the matrix

in Fig. 3d, and the procedure stops because no 0s can be found in the remaining submatrix.

0 1 2 3

0 1 1 1 1

1 1 1 0 1

2 1 0 1 1

3 1 0 0 1

(a)

0 1 2 3

3 1 0 0 1

2 1 0 1 1

1 1 1 0 1

0 1 1 1 1

(b)

0 3 2 1

3 1 1 0 0

2 1 1 1 0

1 1 1 0 1

0 1 1 1 1

(c)

0 3 2 1

3 1 1 0 0

2 1 1 1 0

1 1 1 0 1

0 1 1 1 1

(d)

Fig. 3. Demonstrating the solving procedure using the circuit in Fig. 1a

To get 𝑅, we read out the column and row indices of each diagonal elements (in green background)

in the strictly lower triangular submatrix at the right upper corner: (2, 3), (1, 2). It coincides with
the previous solution {1 ↩→ 2, 2 ↩→ 3}.
Recall that the solver is parameterized with a permutation 𝑃 . To find 𝑃 , it suffices to choose

one row at a time, which aligns with the solving procedure. For example, we can choose a row

that maximizes the remaining submatrix (greedy), or the number of 0s in the remaining submatrix

(heuristics). In addition, we may consult an additional iteration to break a tie (look ahead).

To evaluate the quality of solutions, we also design an ILP model for solving optimal solutions,

and an upper-bound estimator for the cases when solving optimal solution is unfeasible. Evaluation

(Sec.7.3) over the RevLib [Wille et al. 2008] benchmark shows that these methods can find optimal

solutions for most cases.

2.2.4 Generalizing Semantic Preservation. Now that we have an efficient algorithm to find good

solutions to the qubit recycling problem, it becomes crucial to ensure the correctness of its imple-

mentation. Therefore, we aim to develop a certified qubit recycler that guarantees its correctness.

To achieve this, we need to define the correctness for a qubit recycler in the first place.

The correctness of a circuit optimization is typically defined in terms of semantic preservation.

However, for qubit recycling, the existing notions of semantic preservation in compiler verification

for quantum programs, such as those used in VOQC [Hietala et al. 2021] and Giallar [Tao et al.

2022], do not directly apply.

VOQC’s notion of semantic preservation is based on superoperators, with equality defined over

the denotations of circuits. However, VOQC explicitly ties qubit identity to their physical location

in a density matrix and maintains the dimension of quantum states during execution. This approach

makes it challenging to formalize the semantics of dynamic qubit allocation and discard, and it

does not support qubit renaming.

Qubit Recycling Revisited 7

𝑞0

𝑞1

𝑞2
𝑈

𝑞0

𝑞1

𝑞2

(a) Lifting

𝐶1 ⊒ 𝐶′1 𝐶2 ⊒ 𝐶′2
𝐶1;𝐶2 ⊒ 𝐶′1;𝐶

′
2

𝐶 ⊒ 𝐶′ 𝐶′ ⊒ 𝐶′′

𝐶 ⊒ 𝐶′′

(b) Compositionality

Fig. 4. Semantic lifting and semantic preservation.

Similarly, Giallar focuses on local unitary rewritings and has a limited notion of semantic

preservation for unitary circuits. Since qubit recycling involves non-unitary operations like discard

and allocation, their notion of semantic preservation does not directly apply.

Our approach: instrumented circuits, semantic lifting and equivalence. We propose a weaker

criterion that allows for qubit renaming and reusing. We achieve this by decoupling qubit identity

from their physical location at the beginning or end of execution. This decoupling is accomplished

by explicitly instrumenting a circuit 𝐶 with lists of input/output (I/O) qubits, which serve as maps

from qubit identities to their locations in the input/output states.

To define the semantics of a quantum gate with respect to these specific inputs and outputs, we

introduce a semantic lifting mechanism. This lifting is defined using permutations and is applied to

the qubits before and after the gate operation. For example, when applying a two-qubit unitary gate

𝑈 on qubits [𝑞2, 𝑞0] in a state containing qubits [𝑞0, 𝑞1, 𝑞2], we first permute 𝑞2 and 𝑞0 to adjacent

positions, apply the gate𝑈 , and then reverse the permutation. Fig. 4a depicts this lifting. This allows

us to define semantic preservation that is transitive and congruent to sequential composition.

In

In
′

Out

Out
′𝐶′

𝐶

𝜎 ◦ 𝑓 𝜏 ◦ 𝑔

In our definition of semantic preservation, an instrumented cir-

cuit (𝐶′, In′,Out′) preserves the semantics of (𝐶, In,Out), denoted
as 𝐶 ⊒ 𝐶′ omitting the I/O for short, if there exist bijections 𝑓

and 𝑔 (for renaming the qubits), and permutations 𝜎 and 𝜏 (for

positioning the qubits), satisfying:

(1) 𝜎 ◦ 𝑓 (In) = In
′
, and 𝜏 ◦ 𝑔(Out) = Out

′
, and

(2) if the input states are equivalent modulo 𝜎 , the output states are equivalent modulo 𝜏 .

This generalized notion can be roughly interpreted as the above commutative diagram. It allows

for qubit renaming and reusing while still preserving the effects on the input and output states

modulo permutation. It is congruent with sequential composition and is transitive, as shown in

Fig. 4b. This enables modular verification of an optimizer.

In our example, we can observe that the circuit in Fig.1c is semantically equivalent to the circuit

in Fig.1a up to certain bijections. Specifically, we have 𝑓 = id, indicating that the input qubits

remain unchanged, and𝑔 = {3 ↦→ 1, 0 ↦→ 0}. The bijection𝑔 is uniquely determined by the recycling

strategy 1 ↩→ 2, 2 ↩→ 3. It maps each output qubit [0; 3] of the circuit to their corresponding roots

in the graph defined by the recycling strategy. In this case, qubit 3 is mapped to qubit 1, and qubit

0 remains unchanged. This bijection captures the relationship between the output qubits in the

original circuit and their corresponding qubits in the optimized circuit, considering the recycling

strategy that was applied.

2.2.5 Verification versus Validation? When it comes to building a certified optimizing compiler [Leroy

2009; Rideau and Leroy 2010], we can either directly verify the compiler, or employ an untrusted

optimizer alongside a verified validator to validate the result. In the context of qubit recycling,

relying solely on verification or validation seems to be unsatisfying. On one hand, verifying the

8 Hanru Jiang

Rewriter

Input 𝐶

Solver(𝐶)

Sort(↩→,𝐶)

Rename(↩→,𝐶′)

Abort

Output 𝐶′′

𝐶

OK(𝐶′)𝐶

↩→

↩→

𝐶′′

Fail

Fig. 5. Structure of the certified qubit recycler.

correctness of the qubit recycler necessitates verifying the previously introduced algorithms con-

cerning QDG, which is time-consuming and sensitive to updates. On the other hand, validation

approaches may fall short in terms of completeness, as they may reject correct results. In fact, it

is generally impractical to require the validator to be complete: the task of checking the identity

of two quantum circuits is generally challenging [Janzing et al. 2003], and existing translation

validation methods [Kissinger and van de Wetering 2020] may fail to identify equivalent circuits.

Our approach: integrating verification and validation. We design our optimizer to facilitate the

integration of verification and validation techniques, leveraging the benefits of both approaches.

The structure of our certified qubit recycler is illustrated in Fig. 5, each box is a component of the

recycler, and the labeled arrows represent the data flowing in and out of the components. Following

the decomposition in Sec. 2.2.1, our qubit recycler contains an untrusted Solver (the gray node)

that finds recycling strategies, and a verified Rewriter (the green nodes) that rewrites the circuit

based on the solver’s outputs. The Rewriter takes a circuit 𝐶 and a recycling strategy ↩→ as its

inputs, and either outputs an optimized circuit 𝐶′′ or aborts indicating ↩→ is invalid.

The Rewriter consists of a Sort module that handles topological deformation (Fig. 2a), and a

Renamemodule that applies the qubit reusing transformation (Fig. 2b). The Sortmodule is the point

where we integrate validation and verification techniques. In essence, Sort performs a topological

sorting on a DAG circuit with additional recycling edges, utilizing Kahn’s algorithm [Kahn 1962].

Since topological sorting simultaneously sorts the circuit and detects cycles, Sort effectively checks

the validity of a recycling strategy while performing topological deformation.

We implemented the Rewriter in Coq, and verified its correctness as both a validator and a

circuit rewriter. That is, whenever Rewriter successfully produces a circuit 𝐶′ from an input

(𝐶, ↩→), then ↩→ is valid w.r.t. 𝐶 , and the new circuit 𝐶′ preserves the semantics of 𝐶 . In addition

(but not yet mechanized in Coq), since topological sorting always succeeds on DAGs, the Rewriter

will not fail when ↩→ is valid.

3 BASIC SETTINGS
This section presents the syntax of a quantum circuit description language and the qubit recycling

problem on it. The instrumented circuits and their semantics are introduced in Sec. 6 when needed.

3.1 Syntax ofQuantum Circuits
The left half of Fig. 6 shows the syntax of a simple quantum circuit description language. A (uninstru-

mented) circuit 𝐶 is a list of instructions, we use “;” to denote both cons and list concatenation. An

instr can be one of the followings: alloc[𝑞], which allocates a fresh qubit 𝑞 in state |0⟩; discard[𝑞],
which measures qubit 𝑞 and discards the outcome; or𝑈 [®𝑞], which applies a unitary operator𝑈 to

a list ®𝑞 of qubits. The qubit identities range from a set Qid. We do not instantiate a gate set, since it

Qubit Recycling Revisited 9

(Circuit) 𝐶 F nil

| instr ;𝐶

(Instr) instr F alloc[𝑞]
| discard[𝑞]
| 𝑈 [®𝑞]

instr ## instr
′

iff args(instr) ∩ args(instr′) = ∅
𝐶 ## 𝐶′ iff ∀instr ∈ 𝐶, instr′ ∈ 𝐶′ . instr ## instr′

args(alloc[𝑞]) = {𝑞}
args(discard[𝑞]) = {𝑞}

args(𝑈 [®𝑞]) = {𝑞 ∈ ®𝑞}

Fig. 6. Syntax and disjoint instructions.

is mostly irrelevant to qubit recycling. For example, the circuit in Fig. 1a is

alloc[1]; alloc[2]; alloc[3];CX [0, 1];CX [0, 2];CX [0, 3]; discard[1]; discard[2] .

The right half of Fig. 6 defines disjoint instructions. Two instructions instr and instr
′
are disjoint,

denoted by instr ## instr
′
, if their arguments are disjoint, i.e., args(instr) ∩ args(instr′) = ∅. Here

args returns the arguments occurring in an instruction or a circuit. Two circuits 𝐶 and 𝐶′ are
disjoint, denoted by 𝐶 ## 𝐶′, if their instructions are disjoint.

3.2 TheQubit Recycling Problem
When considering the qubit recycling problem, we assume every circuit to be simple, that is, a

discarded qubit won’t be initialized later. For general cases where 𝑞 is allocated after discard, we

may either rename 𝑞 into a fresh qubit after discard, or combine discard[𝑞] and alloc[𝑞] into a

measure-and-reset gate, to obtain a simple circuit.

Definition 3.1 (Simple circuits). A circuit 𝐶 is simple if and only if for any 𝑞 ∈ args(𝐶),
(1) there is at most one alloc[𝑞] in 𝐶 , and alloc[𝑞] (if it exists) is the first gate on 𝑞, and
(2) there is at most one discard[𝑞] in 𝐶 , and discard[𝑞] (if it exists) is the last gate on 𝑞.

Given an input circuit, the qubit recycling problem is to find a topologically identical circuit that

maximizes the number of reusable qubits. We formulate a decision version of this problem to study

its complexity. Below we introduce notions used in formalizing the qubit recycling problem.

Reusable qubit. Given two qubits 𝑞 and 𝑞′ in a simple circuit 𝐶 , 𝑞′ can reuse 𝑞 if and only if

discard[𝑞] occurs before alloc[𝑞′] in 𝐶 . Formally, 𝑞′ can reuse 𝑞 in 𝐶 if there exists 𝑛 and 𝑛′ such
that 𝑛 < 𝑛′, 𝐶 [𝑛] = discard[𝑞] and 𝐶 [𝑛′] = alloc[𝑞′]. Here 𝐶 [𝑛] is the 𝑛-th element in C.

Topologically identical circuits. Two simple circuits 𝐶 and 𝐶′ are topologically identical, denoted

by 𝐶 ∼ 𝐶′, if we can obtain 𝐶′ from 𝐶 by swapping adjacent disjoint instructions:

Nil

nil ∼ nil

Skip

𝐶 ∼ 𝐶′

instr ;𝐶 ∼ instr ;𝐶′

Swap

instr ## instr
′

instr ; instr
′
;𝐶 ∼ instr

′
; instr ;𝐶

Trans

𝐶 ∼ 𝐶′ 𝐶′ ∼ 𝐶′′

𝐶 ∼ 𝐶′′

Clearly ∼ is an equivalence relation. As we will see in Sec 6, if 𝐶 ∼ 𝐶′, they are semantically

equivalent, so we can safely transform 𝐶 into 𝐶′ to find more reusable qubits.

Recycling strategy and validity. We call a set of pairs of qubits {(𝑞𝑖 , 𝑞′𝑖) | 𝑖 = 1, . . . 𝑘} a recycling
strategy if it defines an injective partial map over qubits, i.e., for any 𝑖 ≠ 𝑗 we have 𝑞𝑖 ≠ 𝑞 𝑗 and

𝑞′𝑖 ≠ 𝑞′𝑗 . The size of a recycling strategy is the number of pairs in it. We often use the notation ↩→
for the relation defined by a recycling strategy, i.e., 𝑞𝑖 ↩→ 𝑞′𝑖 if (𝑞𝑖 , 𝑞′𝑖) is in the strategy. A recycling

strategy ↩→ is valid w.r.t. 𝐶 , if there exists 𝐶′ ∼ 𝐶 such that for any 𝑞𝑖 ↩→ 𝑞′𝑖 , 𝑞
′
𝑖 can reuse 𝑞𝑖 . Later

we will see that a given a valid recycling strategy, we can construct 𝐶′ in polynomial time.

10 Hanru Jiang

Definition 3.2 (Qubit recycling problem (decision)). Given a simple circuit 𝐶 and 𝑘 ∈ N, decide if
there is a valid recycling strategy w.r.t. 𝐶 of size 𝑘 .

The original qubit recycling problem is an optimization problem to find a valid recycling strategy

with the largest size. The decision problem in Def. 3.2 reduces to the optimization problem.

4 QUBIT DEPENDENCY GRAPHS
A qubit dependency graph (QDG) makes the qubit recycling problem more manageable. It hides

irrelevant details and lets us focus on the computational dependencies that decide whether a qubit

can be reused. Below we formalize QDG, then show that the validity of a recycling strategy for

a circuit can be determined using its corresponding QDG only. To refer to each instruction in 𝐶

easily, we implicitly label a instruction by its location in 𝐶 , such that it is unique in 𝐶 .

Dependency between instructions. The computation of instr
′
depends on instr in circuit𝐶 , denoted

by instr ≺𝐶 instr
′
, if 𝐶 = 𝐶1; instr;𝐶2; instr

′
;𝐶3 such that (args(instr) ∩ args(instr′)) − args(𝐶2) is

not empty. Equivalently, it means there is an edge from instr to instr
′
in the DAG representation of

𝐶 . In particular, if alloc[𝑞] ≺𝐶 discard[𝑞′], then 𝑞 cannot reuse 𝑞′ in any 𝐶′ such that 𝐶′ ∼ 𝐶 .

Definition 4.1 (Qubit dependency graph). The QDG of a simple circuit 𝐶 , denoted by QDG(𝐶), is
the digraph (args(𝐶),→), where 𝑞 → 𝑞′ if and only if

• 𝑞 is an input qubit (alloc[𝑞] ∉ 𝐶), or 𝑞′ is an output qubit (discard[𝑞′] ∉ 𝐶), or

• alloc[𝑞] ≺𝐶
∗ discard[𝑞′]. Here ≺𝐶

∗
is the reflexive transitive closure of ≺𝐶 .

For example, for circuit𝐶 in Fig. 1a, we have 1→ 2 in its QDG, because alloc[1] ≺𝐶 CX [0, 1] ≺𝐶

CX [0, 2] ≺𝐶 discard[2]; and 0↔ 1 because alloc[0] and discard[0] are not in 𝐶 .
Notably, QDG is invariant under topological deformation.

Lemma 4.2. Given simple circuits 𝐶 and 𝐶′, if 𝐶 ∼ 𝐶′, then QDG(𝐶) = QDG(𝐶′).

Proof. It suffices to show swapping a pair of adjacent disjoint instructions does not change

instruction dependencies.

Assume 𝐶 = 𝐶1; instr; instr
′
;𝐶2, and 𝐶′ = 𝐶1; instr

′
; instr;𝐶2, and instr ## instr

′
. We show

𝑎 ≺𝐶 𝑏 =⇒ 𝑎 ≺𝐶′ 𝑏 for any 𝑎 and 𝑏, by case study on positions of 𝑎 and 𝑏.

• 𝑎 ∈ 𝐶1 and 𝑏 ∈ 𝐶2. Trivial.

• 𝑎 = instr and 𝑏 = instr
′
. Thus args(𝑎) ∩ args(𝑏) = ∅, contradicts with 𝑎 ≺𝐶 𝑏.

• 𝑎 = instr and 𝐶2 = 𝐶21;𝑏;𝐶22. Since instr ## instr
′
, we have

(args(𝑎) ∩ args(𝑏)) − args(instr′;𝐶21) = (args(𝑎) ∩ args(𝑏)) − args(𝐶21).
Thus 𝑎 ≺𝐶′ 𝑏 by definition and 𝑎 ≺𝐶 𝑏.

• 𝐶1 = 𝐶11;𝑎;𝐶12 and 𝑏 = instr
′
. Similar to the above case. □

Validity of recycling strategy w.r.t. QDG. A recycling strategy ↩→ is valid w.r.t a digraph (𝑉 ,→),
if ↩→⊆ 𝑉 ×𝑉 and→↩→ is acyclic. Here 𝑣 →↩→ 𝑣 ′ if there is 𝑣 ′′ such that 𝑣 → 𝑣 ′′ and 𝑣 ′′ ↩→ 𝑣 ′. If
(𝑉 ,→) is the QDG of a simple circuit 𝐶 , the validity of ↩→ w.r.t. 𝐶 coincides with that w.r.t. QDG.

Lemma 4.3 (Adeqacy of QDG). Given a simple circuit 𝐶 and a recycling strategy ↩→,

↩→ is valid w.r.t 𝐶 ⇐⇒ ↩→ is valid w.r.t. QDG(𝐶).

Proof. (Sketch)

• “⇒”: By validity of ↩→w.r.t.𝐶 , one can construct𝐶′ ∼ 𝐶 such that for any𝑞 ↩→ 𝑞′, discard[𝑞]
occurs before alloc[𝑞′] in 𝐶′. By Lm. 4.2, it suffices to prove ↩→ is valid w.r.t. QDG(𝐶′).
We prove this by contradiction. Assume→↩→ is cyclic, i.e., there is 𝑞 s.t. 𝑞(→↩→)+𝑞. By

Qubit Recycling Revisited 11

definition of QDG(𝐶′) and construction of 𝐶′, we have alloc[𝑞] occurs before alloc[𝑞] in
𝐶′, a contradiction.
• “⇐”: It suffices to find 𝐶′ ∼ 𝐶 such that for any 𝑞 ↩→ 𝑞′, discard[𝑞] occurs before alloc[𝑞′]
in 𝐶′. This 𝐶′ can be obtained by topological sorting over instructions in 𝐶 using ≺𝐶

∪{(discard[𝑞], alloc[𝑞′]) | 𝑞 ↩→ 𝑞′}. The above relation is well-defined, because for any

𝑞 ↩→ 𝑞′, there exists discard[𝑞] and alloc[𝑞′] in 𝐶 , otherwise, say discard[𝑞] ∉ 𝐶 , by

definition of QDG, we have 𝑞′ → 𝑞 ↩→ 𝑞′, contradicts with validity of ↩→ w.r.t. QDG(𝐶).
The topological sort must succeed, because the above relation is acyclic, since ≺𝐶 and ↩→
and→↩→ are acyclic. Finally, 𝐶′ ∼ 𝐶 follows from Lm. A.1. □

Validity w.r.t. QDG is irrelevant to universal vertices. Here a vertex is universal if it is connected

to every vertex in both directions, modeling a qubit that serves as both an input and an output.

Proposition 4.4. Given a digraph 𝐺 = (𝑉 ,→) and a set 𝑉 ′ ⊆ 𝑉 of universal vertices in 𝐺 . A

recycling strategy is valid w.r.t. 𝐺 if and only if it is valid w.r.t. the induced subgraph 𝐺 [𝑉 \𝑉 ′].

5 QUBIT RECYCLING IS NP-HARD
We prove the NP-hardness of the qubit recycling problem by showing the corresponding decision

problem (Def. 3.2) is NP-complete. This proof involves two reductions, with recycling on QDGs

(Definition 5.2) serving as the link between an NPC problem and the qubit recycling problem.

Theorem 5.1. The decision version of the qubit recycling problem is NP-complete.

Proof. The qubit recycling problem is in NP, because detecting cycles in a digraph has linear

time algorithms. To show it is NP-complete, it suffices to prove the following reductions, since

Wilf’s question is NP-complete [Fertin et al. 2015].

Wilf’s question

(Def. 5.6)

≤𝑝
(Lm. 5.7,5.5)

Recycling on QDGs

(Def. 5.2)

≤𝑝
(Lm. 5.3)

Qubit recycling

(Def. 3.2)

□

In the following subsections, we explain the reduction steps from right to left.

5.1 Recycling on QDGs Reduces toQubit Recycling
We first formalize the intermediate problem using QDG. Observe from Def. 4.1 that for each qubit

𝑞 occurs in 𝐶 , 𝑞 → 𝑞 in QDG(𝐶), we consider digraph with self loops only.

Definition 5.2 (Recycling problem on QDG). Given a digraph𝐺 = (𝑉 ,→) such that ∀𝑣 ∈ 𝑉 . 𝑣 → 𝑣 ,

and a natural number 𝑘 > 0, decide whether there is a valid recycling strategy of size 𝑘 w.r.t. 𝐺 .

Algorithm 1 ConstructCirc(𝑉 ,→)
1: 𝐶 ← nil

2: for 𝑒 ∈ {(𝑣, 𝑣 ′) | 𝑣 → 𝑣 ′ ∧ 𝑣 ≠ 𝑣 ′} do
3: 𝐶 ← CX [𝑣, 𝑣𝑒];𝐶;CX [𝑣 ′, 𝑣𝑒]
4: // 𝑣𝑒 is fresh

5: end for
6: for 𝑣 ∈ 𝑉 do
7: 𝐶 ← alloc[𝑣];𝐶; discard[𝑣]
8: end for
9: return 𝐶

To reduce Def. 5.2 to qubit recycling problem, we

construct a circuit based on a digraph (𝑉 ,→) using
Alg. 1. The intuition is that for each edge 𝑒 = (𝑣, 𝑣 ′),
we introduce a fresh qubit 𝑣𝑒 and two CX gates, such

that alloc[𝑣] ≺ CX [𝑣, 𝑣] ≺ CX [𝑣 ′, 𝑣] ≺ discard[𝑣 ′],
i.e., 𝑣 → 𝑣 ′ is also in the constructed circuit’s QDG.

Since 𝑣 are I/O qubits, they are universal vertices, and

do not introduce new valid recycling strategies.

For example, in Fig. 7, the left-most of is a 3-node

digraph, in the middle is the constructed circuit. The

right-most is the QDG of the circuit, for clarity, we

12 Hanru Jiang

𝑣1 𝑣2

𝑣3
ConstructCirc

=⇒

𝑣1 ◁ • • ▷
𝑣2 ◁ • • ▷
𝑣3 ◁ • • ▷
𝑣12
𝑣23
𝑣31

QDG

=⇒

𝑣1 𝑣2

𝑣3

{𝑣12, 𝑣23, 𝑣31 }

Fig. 7. An example digraph and the constructed circuit. Self loops are omitted.

merge the 𝑣 vertices. A recycling strategy is valid w.r.t. the left-most digraph if and only if it is

valid w.r.t. the right most digraph, since ˆ𝑣𝑖 𝑗 are universal vertices.

Lemma 5.3. The recycling problem on QDGs reduces to qubit recycling.

Proof. Given digraph 𝐺 = (𝑉 ,→) such that ∀𝑣 ∈ 𝑉 . 𝑣 → 𝑣 , we construct an instance 𝐶 =

ConstructCirc(𝐺) of the qubit recycling problem. The construction is of polynomial time w.r.t.

the size of 𝐺 . The resulting circuit 𝐶 is simple, and each gate in 𝐶 is unique.

To prove the goal, it suffices to show that for any recycling strategy ↩→, its validity w.r.t. 𝐺 is

equivalent to that w.r.t. 𝐶:

↩→ valid w.r.t. 𝐶
(Lm. 4.3)

⇐⇒ ↩→ valid w.r.t. QDG(𝐶)
(Prop. 4.4)

⇐⇒ ↩→ valid w.r.t. QDG(𝐶) [𝑉] = 𝐺.

The right most equal sign follows from Lm. A.4. □

5.2 Wilf’sQuestion Reduces to Recycling on QDGs
We rephrase Def. 5.2 using adjacency matrices, and observe that a digraph is acyclic if and only if

its adjacency matrix 𝐴 can be made strictly upper triangular by permuting its columns and rows

simultaneously. That is, there is a permutation matrix 𝑃 such that 𝑃𝑇𝐴𝑃 is strictly upper triangular.

Definition 5.4 (A triangularization problem). Given a square 0, 1-matrix𝐴whose diagonal elements

are all 1s, and a natural number 𝑘 > 0, decide if there exists permutation matrices 𝑃 and 𝑄 such

that 𝑃𝐴𝑄 =
[∗ 𝐵
∗ ∗

]
for some 𝑘 × 𝑘 strictly lower-triangular matrix B.

We show that the formulation in Def. 5.4 is equivalent to Def 5.2.

Lemma 5.5. Recycling problem on QDGs is equivalent to the triangularization problem (Def. 5.4).

Proof. Recall that a recycling strategy ↩→ of size 𝑘 defines an injective partial map over qubits.

Thus its corresponding adjacency matrix 𝑅 is a partial permutation matrix of rank 𝑘 , that is, there

exists permutation matrices 𝑃 and 𝑄 such that 𝑅 = 𝑄
[
𝐼𝑘 0
0 0

]
𝑃 , where 𝐼𝑘 is the identity matrix of

order 𝑘 . Also observe that given𝐺 = (𝑉 ,→) and its adjacency matrix 𝐴, the graph on𝑉 defined by

→↩→ has adjacency matrix 𝐴𝑅.

Together with the fact that a digraph is acyclic iff its adjacency matrix is nilpotent, we rephrase

the recycling problem on QDGs: given adjacency matrix 𝐴 whose diagonal elements are all 1s and

𝑘 ∈ N, decide whether there exist permutations 𝑃 , 𝑄 such that 𝐴𝑄
[
𝐼𝑘 0
0 0

]
𝑃 is nilpotent.

The rest of the proof is shown below, where 𝑃 , 𝑄 are permutation, and 𝐵 is of order 𝑘 .

∃𝑃,𝑄. 𝑃𝐴𝑄 =
[∗ 𝐵
∗ ∗

]
for some strictly lower-triangular matrix 𝐵

⇔ ∃𝑃,𝑄. 𝑃𝐴𝑄 =
[
𝐵 ∗
∗ ∗

]
for some nilpotent matrix 𝐵 (By Lemma A.5)

⇔ ∃𝑃,𝑄. 𝑃𝐴𝑄
[
𝐼𝑘 0
0 0

]
𝑃𝑃𝑇 =

[∗ 0
∗ 0

]
is nilpotent

⇔ ∃𝑃,𝑄.𝐴𝑄
[
𝐼𝑘 0
0 0

]
𝑃 is nilpotent. □

Qubit Recycling Revisited 13

The formulation in Def. 5.4 is close enough to Wilf’s question defined below.

Definition 5.6 (Wilf’s question [Wilf 1997]). Given a square 0, 1-matrix𝐴, Wilf’s question, denoted

by Wilf(𝐴), asks the existence of permutations 𝑃 and 𝑄 such that 𝑃𝐴𝑄 is upper triangular.

Lemma 5.7. Wilf’s question reduces to the triangularization problem.

Given an instance of Wilf’s question, we can construct a matrix as an instance of problem Def. 5.4

that has the same answer. The construction is by appropriately padding a matrix with 0s and 1s.

The detailed proof of Lm. 5.7 is in Appendix B.

6 CERTIFIED QUBIT RECYCLER
This section presents the verified qubit recycler

Rewriter(↩→,𝐶) F (Rename(↩→,−) ◦ Sort(↩→,−))(𝐶).
We break down the correctness proof into syntactic and semantic properties, as shown below.

Rewriter(↩→,𝐶) = OK(𝐶′)
(Lm. 6.4,6.5,6.7)

=⇒ 𝐶 ↣∗ 𝐶′
(Lm. 6.3,6.2)

=⇒ 𝐶 ⊒ 𝐶′

The philosophy is to break down semantic preservation in a way that minimizes semantic properties

by replacing them with syntactic ones wherever possible. This approach stems from the fact that

syntactic properties are often considerably easier to prove than semantic ones.

Syntactically, we establish that (i) Sort(−,𝐶) is a correct validator for the validity of a recycling

strategy; and (ii) when ↩→ is a valid recycling strategy, Sort(↩→,−) and Rename(↩→,−) equates to
a series of atomic circuit rewrites (↣). Semantically, we demonstrate that these rewrites preserve

semantics (⊒), akin to a soundness proof of rewrite rules.

In the subsequent subsections, we first introduce instrumented circuits that incorporate In-

put/Output qubits, along with their denotational semantics and semantic preservation between

different instrumented circuits. Following this, we present two atomic circuit rewrites and establish

the soundness of the associated rewriting rules. Lastly, we provide a brief overview of the imple-

mentation of Rewriter components and establish their syntactic properties. Results presented in

this section are formalized in Coq, unless explicitly stated otherwise.

6.1 Instrumented Circuits and Semantic Preservation
6.1.1 Instrumented circuits. To decouple qubit identities from their locations and support dynamic

qubit allocation/discard, we instrument a circuit with lists of I/O qubits, which serve as maps from

qubit to its locations. These I/O qubit lists should be consistent with the instructions in the circuit.

Formally, the instrumented circuits, denoted by 𝐶 : In { Out
1
, is inductively defined as follows.

NoDup(In) In ≡𝑝 Out

nil : In { Out

NoDup(®𝑞) ®𝑞 ⊆ In 𝐶 : In { Out

𝑈 [®𝑞];𝐶 : In { Out

𝑞 ∈ In 𝐶 : In { Out

alloc[𝑞];𝐶 : In \ {𝑞} { Out

𝑞 ∈ In 𝐶 : In \ {𝑞} { Out

discard[𝑞];𝐶 : In { Out

Here 𝐴 ≡𝑝 𝐵 means list 𝐴 is a permutation of list 𝐵.

Intuitively, the I/O list of qubits represents the living qubit at the beginning/end of the circuit, re-

spectively. An empty circuit or a unitary gate does not change living qubits. An alloc[𝑞] instruction
brings a dead qubit 𝑞 alive, while discard[𝑞] kills an alive 𝑞. Instructions other than alloc[𝑞] must

operate on living qubits. We often denote (𝐶 : In { Out) by 𝐶 when In and Out are irrelevant.

1
In our Coq development, an instrumented circuit is a triple (𝐶, In,Out) that satisfies a similarly defined property.

14 Hanru Jiang

6.1.2 Denotational Semantics. We consider a symmetric monoidal category as the semantic domain.

It serves as a comprehensive library of axioms for the semantic domain, isolating elements that

are directly relevant to our objectives from the intricacies of lower-level representations such as

density matrices and superoperators.

Concretely, we follow [Selinger 2004], where the semantic domain is a category of superoperators.

Since our focus is on the symmetric monoidal structure, we do not assume a concrete category

instance. Below we introduce a specific instantiation, SuperOp, to aid in understanding.

Semantic domain: symmetric monoidal categories. The objects of SuperOp are natural numbers.

Each object 𝑛 can be interpreted as the number of qubits in a system, or the Hilbert space H2
𝑛

where an 𝑛-qubit system resides in. Special objects in SuperOp includes I = 0, and qbit = 1. A

morphism from𝑚 to 𝑛 is a superoperator E : H2
𝑚 →H2

𝑛 .

Additionaly, SuperOp has a symmetric monoidal structure. The product ⊗ over objects𝑚 and 𝑛

is defined as𝑚 +𝑛. The unit of this product is the object I = 0. Given morphisms E1 ∈ Hom(𝑚1, 𝑛1),
and E2 ∈ Hom(𝑚2, 𝑛2), the product ⊗ over morphisms E1 ⊗ E2 ∈ Hom(𝑚1 ⊗𝑚2, 𝑛1 ⊗𝑛2) is defined
on a basis elements 𝑒1 ⊗ 𝑒2 via (E1 ⊗ E2) (𝑒1 ⊗ 𝑒2) = E1 (𝑒1) ⊗ E2 (𝑒2), and extends to arbitrary

elements by linearity. Finally, the twist 𝛽 is defined on basis elements 𝑒1 ⊗ 𝑒2 via 𝛽 (𝑒1 ⊗ 𝑒2) = 𝑒2 ⊗ 𝑒1.
Using the category SuperOp, the denotation of each individual instruction is shown below,

originally formalized in [Selinger 2004]. A qubit 𝑞 is associated with the object qbit: J𝑞 K = qbit; and
a list of 𝑛 qubits is associated with the tensor product of qbits: J ®𝑞 K = J ®𝑞 [1] K ⊗ . . . ⊗ J ®𝑞 [𝑛] K = qbit𝑛 .
In particular, an empty list of qubits nil is associated with the tensor unit: JnilK = I.

Jalloc[𝑞] K ∈ Hom(JnilK, J [𝑞] K) : 𝑎 ↦→
[
𝑎 0

0 0

]
Jdiscard[𝑞] K ∈ Hom(J [𝑞] K, JnilK) :

[
𝑎 𝑏
𝑐 𝑑

]
↦→ 𝑎 + 𝑑

J𝑈 [®𝑞] K ∈ End(J ®𝑞 K) : 𝐴 ↦→ 𝑈𝐴𝑈 †

permute𝜎 ∈ Hom(𝑋1 ⊗ 𝑋2 ⊗ . . . ⊗ 𝑋𝑛, 𝑋𝜎 (1) ⊗ 𝑋𝜎 (2) ⊗ . . . ⊗ 𝑋𝜎 (𝑛))

Here, we also introduce a family of special morphisms permute𝜎 for later defining semantic lifting.

This is the natural permutation map based on the symmetric tensor ⊗.
We further generalize our semantic domain to an arbitrary symmetric monoidal category, since

a symmetrical monoidal structure is sufficient for proving correctness of qubit recycling. We

refer to the book [Etingof et al. 2016] for more details about symmetric monoidal categories. This

generalization is reasonable because, commonly used semantic domains for quantum programs

[Abramsky and Coecke 2004; Heunen and Vicary 2019; Selinger 2004, 2005] share a symmetric

monoidal structure. Notably, by encoding permutations as twists within an SMC, their properties

and interactions with tensor product or other morphisms are succinctly captured by the coherence

identities. This enables us to avoid repeatly dealing with matrix representations of permutations

and cubersome index manipulations in Kronecker products. The remainder contents of this section

depends only on the properties of a symmetric monoidal category, without referring to the concrete

instantiation SuperOp.
In detail, we parameterize over an arbitrary symmetric monoidal category SMC as the semantic

domain, and assume a special object qbit ∈ SMC. In defining denotations for alloc and discard, we
assume morphisms alloc ∈ Hom(I, qbit) and discard ∈ Hom(qbit, I). For unitary operations, we

assume a partial map unitary(𝑈 ,𝑛) : End(qbit𝑛) ∪ {⊥}, where an endomorphism is defined only if

𝑈 can be applied over 𝑛 qubits. The permute𝜎 morphism generalizes to any morphism in SMC that

implements the permutation 𝜎 , constructed using associator 𝛼𝑋,𝑌,𝑍 : (𝑋 ⊗ 𝑌) ⊗ 𝑍 � 𝑋 ⊗ (𝑌 ⊗ 𝑍),
left and right unitors _𝑋 : I ⊗ 𝑋 � 𝑋 and 𝜌𝑋 : 𝑋 ⊗ I � 𝑋 , or twist 𝛽𝑋,𝑌 : 𝑋 ⊗ 𝑌 � 𝑌 ⊗ 𝑋 . By the

Qubit Recycling Revisited 15

Jnil : In { OutK = permute𝜎 where Out = 𝜎 (In)

Jalloc[𝑞] : In { OutK = permute𝜎 ◦ alloc ⊗ id ◦ _−1 where Out = 𝜎 (𝑞; In)

Jdiscard[𝑞] : In { OutK = _ ◦ discard ⊗ id ◦ permute𝜎 where 𝑞;Out = 𝜎 (In)

J𝑈 [®𝑞] : In { OutK = permute𝜏 ◦ unitary(𝑈 , | ®𝑞 |) ⊗ id ◦ permute𝜎

where 𝜎 (In) = (®𝑞;Mid) = 𝜏−1 (Out) for some Mid

J𝐶1;𝐶2 : In { OutK = J𝐶2 : Mid { OutK ◦ J𝐶1 : In { MidK for some Mid

Fig. 8. Lifted semantics

coherence theorem of symmetric monoidal categories, these morphisms are identical, thus the

generalized permute𝜎 is well defined.

Semantic lifting. On top of an SMC and the parameterized objects and morphisms, we define

the denotation of an instrumented circuit (𝐶 : In { Out) by lifting the morphisms of individual

instructions to a morphism between the I/O qubits, using permutation and left/right unitors. This

is to permute the input qubits In to make the arguments of an instruction adjacent and aligned in

order, such that the morphisms of the corresponding instruction is applicable. After applying the

morphism, we again permutes the living qubits such that they are in the order defined by Out.

The denotational semantics lifted w.r.t. I/O is formalized in Fig. 8. We omit the associators for

clarity, since they are irrelevant by the coherence theorem of a monoidal category. A denotation

is defined only if the intermediate terms are all defined. The permutations involved are uniquely

determined, and the choice of the intermediate qubit lists Mid does not affect the results. Thus

Fig. 8 indeed defines a partial function over the instrumented circuits.

Graphical representations for the lifted denotation of alloc, discard and𝑈 are depicted in Fig. 9.

An arrow represents an object (or the identity morphism) in SMC, which is labeled next to the line.

The object I is specially represented by a dashed arrow. Arrows placed in juxtaposition means a

tensor product of objects. A morphism is represented by a box or triangle, whose domain is the

line coming from the bottom, and the codomain is the line outgoing to the top.

J InK
_−1

J InK

I

alloc

J𝑞 K

𝜎

JOutK

(a) Jalloc[𝑞] : In { OutK

J InK

𝜎

JOutK

J𝑞 K
discard

I

_

JOutK

(b) Jdiscard[𝑞] : In { OutK

J InK

𝜎

J In \ ®𝑞 K

J ®𝑞 K

unitary(𝑈 , | ®𝑞 |)

J ®𝑞 K

𝜏

JOutK

(c) J𝑈 [®𝑞] : In { OutK

Fig. 9. Graphical repr. of the lifting. Here _ is the left unitor, 𝜎 and 𝜏 are permutation morphisms.

6.1.3 Semantic Preservation. On top of the denotational semantics, semantic preservation is natu-

rally defined as equivalence over the denotations modulo renaming and permutation.

16 Hanru Jiang

Definition 6.1 (Semantic preservation). For any instrumented circuits𝐶 : In { Out and𝐶′ : In′ {
Out

′
, the latter preserves the semantics of the former, denoted as 𝐶 ⊒ 𝐶′, if there exists bijections

𝑓 , 𝑔, and permutations 𝜎 , 𝜏 , such that

(1) (I/O equivalence up to renaming and permutation) In
′ = 𝜎 ◦ 𝑓 (In) and 𝜏 (Out′) = 𝑔(Out);

and

(2) (Safety preservation) if J𝐶 K is defined, then J𝐶′ K is defined; and
(3) (Semantics equivalence modulo permutation) J𝐶 K = permute𝜏 ◦ J𝐶′ K ◦ permute𝜎 .

We prove that this semantic preservation is compositional.

Lemma 6.2 (Compositionality). The relation ⊒ is transitive, and is congruent to sequential

composition. The latter is, for any 𝐶1, 𝐶
′
1
, 𝐶2, 𝐶

′
2
, we have 𝐶1 ⊒ 𝐶′

1
∧𝐶2 ⊒ 𝐶′

2
=⇒ 𝐶1;𝐶2 ⊒ 𝐶′

1
;𝐶′

2
.

Here𝐶 ;𝐶′ is defined only if there is a Mid such that𝐶 = (𝐶 : In { Mid) and𝐶′ = (𝐶′ : Mid { Out).

6.2 Rewriting rules
We introduce two rewriting rules over instrumented circuits, and use relation𝐶 ↣ 𝐶′ to denote𝐶′

is obtained from 𝐶 via a rewriting step.

TopoDeform

In ≡𝑝 In
′ 𝐶 ∼ 𝐶′ Out ≡𝑝 Out

′

(𝐶 : In { Out)↣ (𝐶′ : In′ { Out
′)

Reuse

𝑞′ ∉ (𝐶1 : In { Mid) 𝑞 ∉ (𝐶2 : Mid { Out)
(𝐶1;𝐶2 : In { Out)↣ (𝐶1;𝐶2 : In { Out) [𝑞/𝑞′]

Here 𝑞 ∉ (𝐶 : In { Out) indicates that qubit 𝑞 is not present in the sets In and Out, nor is it

used as an argument in any instructions within 𝐶 . This signifies that 𝑞 is entirely irrelevant in the

instrumented circuit, and its lifetime does not overlap with the execution of 𝐶 . The notation [𝑞/𝑞′]
denotes the substitution of each occurrence of 𝑞′ with 𝑞.
The first rule involves topological deformation, and permits permutation on I/O qubits, while

the second rule allows for the reuse of qubit 𝑞 as 𝑞′, given that the lifetime of 𝑞 precedes that of 𝑞′.
We prove that these rewriting rules are sound. The proof relies on properties such as the

interchange law and coherence theorem of a symmetric monoidal category.

Lemma 6.3 (Soundness of rewriting rules). If 𝐶 ↣ 𝐶′, then 𝐶 ⊒ 𝐶′.

In the following subsections, we show that the overall behavior of our recycler is equivalent to a

series of circuit rewritings using these two rules.

6.3 Sorting and Validity Checking
The Sort function takes a recycling strategy ↩→ and a circuit 𝐶 as inputs. It tries to do topological

deformation over 𝐶 such that the reordered circuit 𝐶′ is compatible with ↩→. That is, for each

𝑞 ↩→ 𝑞′, 𝑞′ can reuse 𝑞 in 𝐶′.
The algorithm Sort is outlined in Alg. 2. In line 1, the algorithm first checks two conditions for

the input ↩→: (i) ↩→ is an injective function, and (ii) for each 𝑞 ↩→ 𝑞′, both discard[𝑞] and alloc[𝑞]
are present in 𝐶 . If both conditions are met, the circuit is translated into a DAG representation,

denoted as𝐺 (line 2). Next, edges (discard[𝑞], alloc[𝑞′]) are added to𝐺 for each 𝑞 ↩→ 𝑞′, resulting
in 𝐺 ′ (line 3). The algorithm then performs a topological sorting using Kahn’s algorithm (line

4). Kahn’s algorithm guarantees that the circuit is reordered without violating computational

dependencies, ensuring that discard[𝑞] occurs before alloc[𝑞′] for each 𝑞 ↩→ 𝑞′. If the topological

Qubit Recycling Revisited 17

sorting succeeds, the algorithm returns the reordered circuit (line 5); otherwise, it detects a cycle in

𝐺 ′ that invalidates ↩→.

Algorithm 2 Sort(↩→,𝐶)
1: if ↩→ is a recycling strategy for 𝐶 then
2: 𝐺 ← DAG of 𝐶

3: 𝐺 ′ ← 𝐺 with edges defined by ↩→
4: if TopoSort(𝐺 ′) = OK(𝐶′) then
5: return OK(𝐶′ : In { Out)
6: end if
7: end if
8: return Invalid recycling strategy

The following lemma states that if Sort succeeds, it

produces a topological deformation on the input circuit,

which, in turn, corresponds to an atomic rewriting.

Lemma 6.4 (Sort returns a topological deforma-

tion of 𝐶 .). Given 𝐶 : In { Out and ↩→, if Sort(↩→
, (𝐶 : In { Out)) = OK(𝐶′ : In { Out), then 𝐶′ ∼ 𝐶 . By
definition, 𝐶 ↣ 𝐶′.

As mentioned in Sec. 2.2, Sort also serves as a valida-

tor for the validity of ↩→. The following lemma states

its correctness as a validator, which guarantees ↩→ is a

correct input for the subsequent phase Rename.

Lemma 6.5 (Sort is a correct validator). Given 𝐶 and ↩→, if Sort(↩→,𝐶) = OK(𝐶′) for some

𝐶′, then for any 𝑞 ↩→ 𝑞′, 𝑞′ can reuse 𝑞 in 𝐶′.

The inverse of the previous lemma also holds, which says Sort is a “complete” validator.

Lemma 6.6 (Sort succeeds when recycling strategy is valid). Given 𝐶 and ↩→, then ↩→ is

valid w.r.t. 𝐶 if and only if Sort(↩→,𝐶) succeeds.
The proof of Lm. 6.6 is straightforward, but not yet mechanized in Coq.

Proof. Recall that edges of the DAG representation of 𝐶 are dependencies ≺𝐶 between instruc-

tions. It is straightforward to show that if 𝐶′ ∼ 𝐶 , then 𝐶′ is a topological sorting of the DAG of 𝐶 .

By definition, ↩→ is valid w.r.t. 𝐶 if and only if there is a topological sorting 𝐶′ of the DAG of 𝐶

which is additionally compatible with the order {(discard[𝑞], alloc[𝑞′]) | 𝑞 ↩→ 𝑞′}. I.e., there is a
topological sorting 𝐶′ of the DAG of 𝐶 with additional edges {(discard[𝑞], alloc[𝑞′]) | 𝑞 ↩→ 𝑞′}.
Kahn’s algorithm succeeds if and only if this topological sorting exists. □

6.4 Reusing by Renaming

Algorithm 3 Rename(↩→,𝐶)
1: if ↩→= {(𝑞, 𝑞′)}∪ ↩→′ then
2: return Rename(↩→′ [𝑞/𝑞′],𝐶 [𝑞/𝑞′])
3: else
4: return 𝐶

5: end if

The Rename function is described in Alg. 3. It operates by removing a pair of qubits (𝑞, 𝑞′) from
the recycling strategy ↩→. Subsequently, it performs a substitution (line 4), replacing all occurrences

of 𝑞′ with 𝑞 in the remaining part of ↩→ and the instrumented circuit 𝐶 . The function proceeds

to recursively invoke Rename on the updated recycling strategy and instrumented circuit, thus

continuing the recycling process.

Intuitively, in each iteration of the substitution process in line 4, a single qubit is reused. Notably,

Rename is a total function, it preserves semantics only if the inputs are appropriate. The following

lemma establishes that when the recycling strategy ↩→ is valid, the Rename function is equivalent

to a series of atomic rewrites (using the Reuse rule) over the instrumented circuit 𝐶 .

18 Hanru Jiang

Algorithm 4 Solver(𝑓 , 𝐴, 𝜎)
1: if not ℎ𝑎𝑙𝑡 (𝜎) then
2: 𝑟 ← 𝑓 (𝐴, 𝜎)
3: 𝜎

𝑟−→𝐴 𝜎′

4: Solver(𝑓 , 𝐴, 𝜎′)
5: else return Extract(𝜎)
6: end if

Algorithm 5 Extract(𝜎)
1: 𝑟𝑙 ← 𝜎.rows
2: 𝑘 ← |𝑟𝑙 |
3: 𝑐𝑙 ← 𝜎.cols_del ++𝜎.cols
4: return {(𝑐𝑙 [𝑛 − 𝑘 + 𝑖], 𝑟𝑙 [𝑖]) | 𝑖 = 0, 1, ..., 𝑘 − 1}
5:

6:

Lemma 6.7 (Rename is eqivalent to a series rewrites). For any ↩→ and𝐶 , if 𝑞′ can reuse 𝑞 in

𝐶 for any 𝑞 ↩→ 𝑞′, then 𝐶 ↣∗ Rename(↩→,𝐶).

6.5 Final Theorem and Coq Development
Putting the previous results together, we obtain the final theorem for our certified qubit recycler.

Theorem 6.8. For any recycling strategy ↩→ and instrumented circuits 𝐶 and 𝐶′,

Rewriter(↩→,𝐶) = OK(𝐶′) =⇒ 𝐶 ⊒ 𝐶′ .

We implemented Rewriter and mechanized Thm. 6.8 in the Coq proof assistant, with ∼6k lines

of Coq code. The mechanization is built on top of an axiom-free formalization of category theory

in Coq [Wiegley 2022]. Notable byproducts of this Coq formalization include the implementation

and verification of Kahn’s algorithm for topological sorting, and version of the coherence theorem

for symmetric monoidal categories.

We extracted Rewriter to OCaml such that it can work together with the Solver in Sec. 7.

7 SOLVER FOR FINDING RECYCLING STRATEGIES
This section presents our algorithm for finding recycling strategies, and an empirical evaluation on

the RevLib [Wille et al. 2008] benchmark.

7.1 The Algorithm
Our algorithm is outlined inAlg. 4. The Solver is inspired by Lm. 5.5, that finding recycling strategies

on QDGs is equivalent to a triangularization problem. The Solver is essentially a polynomial time

algorithm for the triangularization problem given a row permutation 𝑃 . It implements the procedure

demonstrated in Fig. 3: given a heuristic function 𝑓 (which essentially computes a permutation

𝑃 one row at a time), an 𝑛 × 𝑛 matrix 𝐴 representing a QDG, and a current state 𝜎 , it iteratively

choose a row 𝑟 using 𝑓 , take a step to state 𝜎 ′, and continue the procedure.

A state 𝜎 is a tuple (rows, cols, cols_del, k). Here rows is a list of row indices already chosen,

cols is the list of remaining columns, cols_del is the list of deleted columns, and k is an upper-

bound of the number of further steps.

The initial state is 𝜎0 = ([], [0, ..., 𝑛 − 1], [], 𝑛), and ℎ𝑎𝑙𝑡 (𝜎) if 𝜎.k ≤ 0. The stepping rule is:

𝑟 ∉ rows cols′ = cols\{ 𝑗 | 𝐴𝑟 𝑗 = 1} cols_del′ = cols_del ++ (cols\cols′)
rows′ = (cols′ = [] ? rows : (rows ++[𝑟])) k′ = min(k, |cols′ |) − 1

(rows, cols, cols_del, k) 𝑟→𝐴 (rows′, cols’, cols_del′, k′)

In each step, given a next row 𝑟 , it deletes those columns 𝑗 such that 𝐴𝑟 𝑗 = 1, and updates the

list for remaining columns (col) and deleted columns (col_del). It then appends 𝑟 to rows if the
remaining columns col’ is not empty. Finally, it updates k to the minimum of k − 1 and |cols′ | − 1.

Qubit Recycling Revisited 19

When reaching a halting state 𝜎ℎ , the solver extracts the solution from 𝜎ℎ , as described in Alg. 5.

The size of the extracted recycling strategy is the number of overall steps.

Below we illustrate an execution of this algorithm using the QDG presented in Sec. 2.2 as an

example. We assume the heuristic 𝑓 chooses rows (3, 2, 1, 0) in order.

0 1 2 3

0 1 1 1 1

1 1 1 0 1

2 1 0 1 1

3 1 0 0 1

𝑟 row col col_del k

𝜎0 3 [] [0, 1, 2, 3] [] 4

𝜎1 2 [3] [1, 2] [0, 3] 1

𝜎2 − [3, 2] [1] [0, 3, 2] −1

The algorithm halts after 2 steps. Extracting the result from 𝜎2 yields {(2, 3), (1, 2)}, a solution of

size 2 and coincides with our previous solution.

We also adapted the “dual-circuit” technique [DeCross et al. 2023], which appears to be more

intuitive in our settings. Recall that a valid recycling strategy w.r.t. a QDG 𝐴 is essentially a partial

permutation matrix 𝑅 such that 𝐴𝑅 is nilpotent, it is straightforward to show that 𝑅𝑇 is a valid

recycling strategy w.r.t. 𝐴𝑇
. We apply the solver to both 𝐴 and 𝐴𝑇

, and return the larger solution.

7.1.1 Designs of the Heuristics. It remains to find an appropriate heuristic 𝑓 such that the number

of overall steps is maximized. We design heuristics based on the following observations:

(1) (Greedy) The bound k in the state strictly decreases as the algorithm proceeds, and the

algorithm halts if k ≤ 0. Therefore, we may choose the next row that maximizes the bound

k in the next step, such that the algorithm is likely to step more.

(2) (Max0s) The more 0s there are in the submatrix 𝐴[rows′] [cols′], it is more likely for the

algorithm to continue stepping. Therefore, we may choose the next row that maximizes the

number of 0s in 𝐴[rows′] [cols′].
(3) (LA) In experiments, it is common that several rows perform equally. In these cases, we may

break a tie by taking a further step (look-ahead).

Later in this section, we evaluate these heuristics, which yield optimal results most of the time.

7.2 An ILP Model and Upper-Bound Estimator forQubit Recycling
To tell whether our heuristics obtain an optimal solution, we try to find an optimal solution

by translating qubit recycling problem into an ILP model, and solve the model using the SCIP

solver [Bolusani et al. 2024], a framework for Constraint Integer Programming. When the problem

size is too large for SCIP to find optimal solutions in reasonable time, we estimate an upper-bound

for the size of an optimal solution.

maximize 1𝑇 · 𝑅 · 1
subject to 𝐴𝑅 nilpotent

1𝑇 · 𝑅 ≤ 1
𝑅 · 1 ≤ 1

Fig. 10. The ILP model.

7.2.1 ILP Model. Recall that given a QDG in form of a 𝑛 × 𝑛 0-1

matrix𝐴, to find a maximal valid recycling strategy is to find a partial

permutation matrix 𝑅 (representing an injective partial map) such

that𝐴𝑅 is nilpotent, and the rank of 𝑅 is maximized. This description

can be roughly transformed into an ILP problem in Fig. 10. Here 𝑅

consists of 𝑛 × 𝑛 0-1 variables, and the constraints 1𝑇 · 𝑅 ≤ 1 and

𝑅 · 1 ≤ 1 is to guarantee that 𝑅 is a partial permutation. The main

difficulty is to translate “nilpotent” into a linear constraint.

We achieve this using the fact [Bang-Jensen and Gutin 2008] that: every acyclic graph has an

acyclic ordering. That is, an ordering 𝑝1, ..., 𝑝𝑛 such that for every 𝑝𝑖 → 𝑝 𝑗 , we have 𝑖 < 𝑗 . Since

the nilpotent constraint is equivalent to requiring the digraph represented by 𝐴𝑅 is nilpotent,

we introduce another 𝑛 integer variables 𝑝𝑖 representing the 𝑖-th qubit in an acyclic ordering,

and the nilpotent constraint becomes: ∀𝑖, 𝑗 . (𝐴𝑅)𝑖, 𝑗 = 1 =⇒ 𝑝𝑖 < 𝑝 𝑗 , and additional constraints

20 Hanru Jiang

∀𝑖 . 1 ≤ 𝑝𝑖 ≤ 𝑛 and ∀𝑖 ≠ 𝑗 . 𝑝𝑖 ≠ 𝑝 𝑗 . These constraints can be easily translated into 𝑂 (𝑛2) linear
constraints at a cost of additional 𝑂 (𝑛2) variables.

The model then becomes:

maximize 1𝑇 · 𝑅 · 1
subject to (𝐴𝑅)𝑖, 𝑗 = 1 =⇒ 𝑝𝑖 < 𝑝 𝑗 for any 𝑖, 𝑗

1 ≤ 𝑝𝑖 ≤ 𝑛 for any 𝑖

𝑝𝑖 ≠ 𝑝 𝑗 for any 𝑖 ≠ 𝑗

1𝑇 · 𝑅 ≤ 1
𝑅 · 1 ≤ 1

We introduce a boolean variable 𝑃𝑖 𝑗 for those constraints 𝑝𝑖 ≠ 𝑝 𝑗 , where 𝑃𝑖 𝑗 = 1 or 0 if and only

if 𝑝𝑖 > 𝑝 𝑗 or 𝑝𝑖 < 𝑝 𝑗 , respectively. The full model is:

maximize

∑
𝑖 𝑗 𝑅𝑖 𝑗

subject to 𝑝𝑖 − 𝑝 𝑗 + 𝑛(𝐴𝑅)𝑖 𝑗 ≤ 𝑛 − 1 for any 𝑖, 𝑗

1 ≤ 𝑝𝑖 ≤ 𝑛 for any 𝑖

1 − 𝑛 ≤ 𝑝𝑖 − 𝑝 𝑗 − 𝑛𝑃𝑖 𝑗 ≤ −1 for any 𝑖 ≠ 𝑗∑
𝑗 𝑅𝑖 𝑗 ≤ 1 for any 𝑗∑
𝑖 𝑅𝑖 𝑗 ≤ 1 for any 𝑖

integers 𝑝𝑖 for any 𝑖

binaries 𝑅𝑖 𝑗 , 𝑃𝑖 𝑗 for any 𝑖, 𝑗

Our model is more compact (𝑂 (𝑛2) variables and constraints) compared with that of [DeCross

et al. 2023] (𝑂 (𝑛2) variables and 𝑂 (𝑛4) constraints), thus is potentially easier to solve.

7.2.2 Upper-Bound Estimator. If we are to have a size 𝑘 solution for a QDG 𝐴, by Lm. 5.5, there

must be a strictly upper-triangular submatrix 𝐵 of order 𝑘 . Therefore, there must be a row 𝑖𝑘 with

more than 𝑘 0s, and a column 𝑗𝑘 with more than 𝑘 0s. Among the rest of rows and columns, there

must be a row 𝑖𝑘−1 with more than 𝑘 − 1 0s, etc. Based on this idea, we have an upper-bound

estimation for the size of the optimal solution. We count the number of 0s of each rows, and sort

the counts in descending order obtaining 𝑟1, 𝑟2, ..., 𝑟𝑛 . We do the same for the columns, and obtain

𝑐1, 𝑐2, ..., 𝑐𝑛 . The upper bound is
ˆ𝑘 = min𝑖=1,2,...,𝑛 (min(𝑟𝑖 , 𝑐𝑖) + 2(𝑖 − 1)).

7.3 Experimental Evaluation
This subsection presents experimental evaluation of the performance of Alg. 4 with 5 heuristics

(namely, Greedy, Max0s, their look-ahead version Greedy+LA and Max0s+LA, and Greedy+Max0s
that returns the better results from Greedy and Max0s), along with comparisons with recent related

works. The following outlines the specific settings.

Metrics. We evaluated each method using metrics including the number of recycled qubits, result

optimality and solving time, and the increase in circuit depth after recycling.

Dataset. We conducted evaluations using the 84 circuits from the RevLib [Wille et al. 2008]

benchmark reported in [Paler et al. 2016]. Additionally, to facilitate comparisons with related works,

we introduced a modified version of the dataset. In these modified circuits, each qubit is allocated

before use and discarded at the end, effectively eliminating I/O qubits.

Comparative studies. We compare our algorithm with [Paler et al. 2016] and two recent related

works [DeCross et al. 2023; Hua et al. 2023]. However, the latter two works do not explicitly

support circuits with I/O qubits. In order to facilitate a fair comparison with them, on one hand, we

Qubit Recycling Revisited 21

#Recycled qubits (the more the better)

Circuit W P D G GL M ML GM

pdc_307 619 464 505 505 505 508 508 508

spla_315 489 401 407 407 407 407 407 407

hwb9_304 170 81 121 121 119 119 119 121

ex5p_296 206 107 127 127 127 125 125 127

e64-bdd_295 195 114 126 126 126 126 126 126

hwb8_303 112 52 73 73 73 73 73 73

hwb7_302 73 31 45 45 45 44 44 45

hwb6_301 46 20 22 22 23 22 22 22

(a) For each circuit, we list its width in column “W”, and the num-

ber of recycled qubits using various methods in sub-columns of

“# Recycled qubits”. Each sub-column corresponds to a method as

follows: “P”: those reported in [Paler et al. 2016]; “D”: our imple-

mentation of [DeCross et al. 2023]’s algorithm; “G”: Greedy; “M”:

Max0s; “GL”: Greedy+LA; “ML”: Max0s+LA; “GM”: Greedy+Max0s.
The best results among the methods are highlighted.

0.02

0.06

0.25

1.00

4

16

64

0 200 400 600

TI
M

E
IN

 S
EC

O
N

D
S

CIRCUIT WIDTH

D

G

GL

M

ML

GM

(b) Average time consumption.

D
EP

TH
 R

A
TI

O

100%

300%

500%

700%

900%

1100%

D G GL M ML GM

(c) Box plot of the ratios of circuit

depths after and before recycling.

Fig. 11. Selected results of the evaluation on the RevLib benchmark.

additionally evaluate our algorithm on modified RevLib circuits, as described above; on the other

hand, we implement the a version of the algorithm in [DeCross et al. 2023] that support I/O qubits.

Experimental setup. The experiments were conducted on a PC equipped with an AMD Ryzen 9

5950X CPU and 64GB of RAM, running Debian version 5.10.127-1.

7.3.1 Evaluation Results on RevLib. Selected results of the evaluation on the RevLib benchmark

are shown in Fig. 11. Overall, all the methods achieves optimal on the majority of RevLib circuits;

Greedy+Max0s achieves the highest number of best results.

Optimality. For 76 out of the 84 circuits, all of our methods, including our implementation of

[DeCross et al. 2023]’s algorithm, achieved optimal results. In contrast, [Paler et al. 2016] achieved

optimal results in only 59 of these circuits, and erroneously surpassed the optimal solution in 2

circuits. However, for the remaining 8 circuits, we could not determine if an optimal solution was

obtained due to SCIP not terminating within 24 hours, and our estimated upper bounds did not

match our solutions. The results for these 8 circuits are listed in Table 11a. For any pair of these

methods, there exists a circuit where one method outperforms the other, except for [DeCross et al.

2023] and Greedy, which perform equally, and Max0s and Max0s+LA, which also perform equally.

Furthermore, Greedy+Max0s achieves the highest number of optimal solutions, and performs

equivalently or superiorly to [DeCross et al. 2023] and [Paler et al. 2016] in every example.

Time consumption. Fig. 11b shows the average time consumption (in logarithmic scale) of each

method for RevLib circuits of different widths. The time consumption of [DeCross et al. 2023]

and of Greedy are nearly the same and are the lowest among the methods. The LA methods

incurs a significant overhead in time. Compared to [DeCross et al. 2023], the time consumption of

Greedy+Max0s is approximately 1.5-3 times greater.

Increase in depth. Fig. 11c displays boxplots of the ratio between depth before and after recycling

using each method. The performance of each method is comparable, with depth increase ranging

22 Hanru Jiang

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

SA
V

IN
G

 R
A

TE

D

G

GL

M

ML

GM

CaQR

(a) Box plot of the rate of qubit

saving across different methods.

0.02

0.13

1.00

8

64

512

4096

0 100 200

TI
M

E
IN

 S
EC

O
N

D
S

CIRCUIT WIDTH

D

G

GL

M

ML

GM

CaQR

(b) Average time consumption.

D
EP

TH
 R

A
TI

O

100%
150%
200%
250%
300%
350%
400%
450%
500%
550%
600%

D

G

GL

M

ML

GM

CaQR

(c) Box plot of the ratios of circuit

depths after and before recycling.

Fig. 12. Results of the evaluation on the modified RevLib benchmark.

from 144% to 176% on average. The ratios for methods Max0s, Max0s+LA and Greedy+Max0s have
relatively consistent distribution.

7.3.2 Evaluation Results onModified RevLib. Fig. 12 illustrates the evaluation results on themodified

RevLib circuits, where we additionally assess CaQR[Hua et al. 2023]. We excluded 8 circuits where

CaQR failed to terminate within 6 hours. The performance of all methods, except CaQR, closely

mirrors the results from the unmodified RevLib circuits. Despite yielding a similar increase in

circuit depth, CaQR exhibits significantly higher time consumption and noticeably lower qubit

saving rates (
#Recycled qubits

Circuit width
). The outliers in Fig. 12c, where CaQR demonstrates lower depth ratios,

correspond to circuits where CaQR recycled considerably fewer qubits compared to other methods.

8 RELATEDWORK
Width optimization for quantum circuits. Wire-recycling [Paler et al. 2016], CaQR [Hua et al.

2023], and two other recent works [DeCross et al. 2023; Sadeghi et al. 2022] investigate circuit

width optimization in settings similar to ours, where opportunities for qubit reuse are created solely

through topological deformations. Each algorithm in these works operates by reusing one qubit at

a time and employs fundamentally similar criteria for 1-qubit reuse. Notably, [Sadeghi et al. 2022]

and [DeCross et al. 2023], along with our Greedy heuristic, appear functionally similar, except that

[Sadeghi et al. 2022] does not utilize the “dual-circuit” technique.

Among these works, [Sadeghi et al. 2022] and [DeCross et al. 2023] explicitly operate on a more

compact causal cone abstraction (referred to as dependency lists in [Sadeghi et al. 2022]) rather

than DAG representation. Our QDG effectively generalizes the causal cone by uniformly treating

I/O qubits as special dependencies. Built on top of QDG, our triangularization formalization of the

qubit recycling problem further provides criteria for valid recycling strategies, and enhances the

intuitiveness of algorithm design, such as the Greedy heuristic and the “dual-circuit” technique.

Our approach also naturally led to the design of Max0s, which outperforms [DeCross et al. 2023]

on certain circuits.

CaQR [Hua et al. 2023] and [Sadeghi et al. 2022] additionally target SWAP reduction and improved

fidelity or PST, which are critical aspects for NISQ applications. While these aspects are beyond

the scope of this work, extending QDG with additional costs for each recycling strategy could

potentially facilitate SWAP-aware qubit reuse. Furthermore, CaQR handles circuits where all gates

commute, such as QAOA circuits, by reducing the problem to graph coloring. It is unclear to us

how to generalize QDG to leverage non-trivial gate commutativity.

Qubit Recycling Revisited 23

In addition to these works, REVS [Parent et al. 2015] and SQUARE [Ding et al. 2020] leverage

uncomputation to create qubit-reuse opportunities, which also falls beyond the scope of our work.

Related problems in classical compiler optimizations. Two closely related problems in classical

compiler optimizations are minimum register instruction sequencing (MRIS) [Govindarajan et al.

2003], and register saturation (RS) [Touati 2005]. MRIS appears fundamentally the same as qubit

recycling. It asks to find a scheduling of instructions that requires minimum registers. However,

the complexity of MRIS is not known. Opposite to qubit recycling, RS is an NP-hard problem that

asks for the upper bound of needed registers in all possible scheduling. Another closely related

problem is optimal code generation for DAGs, which is known to be NP-complete [Bruno and Sethi

1976]. Its objective is to minimize code length instead of the number of registers.

Related problem in the language of monoidal categories. In the context of monoidal categories, a

closely related problem is computing the monoidal width [Lavore and Sobociński 2023]. Monoidal

width quantifies the complexity of decomposing morphisms within monoidal categories, encom-

passing structural width measures for graphs like tree width and rank width. While monoidal width

penalizes the composition operation along “large” objects and encourages the use of monoidal

products, the qubit recycling problem seeks to minimize circuit width by penalizing the usage of

monoidal products. For instance, the monoidal width of 𝑓 ⊗ 𝑔 is determined by max(𝑤 (𝑓),𝑤 (𝑔))
using a weight function 𝑤 , whereas a proper definition for circuit width should be in a form of

𝑤 (𝑓) +𝑤 (𝑔). Exploring the generalization of the qubit recycling problem to other settings presents

an intriguing avenue for further investigation.

Compiler verification for quantum programs. There are numerous works on compiler verification

and formulation of compiler correctness for various scenarios [Patterson and Ahmed 2019]. Few

work targets the quantum settings. Amy et. al. [Amy et al. 2017] verified a compiler from Boolean

expressions to reversible circuits in F*, with an aim to reduce circuit width. However, their verifica-

tion uses a classical semantic model, where a state is of type N→ B. ReQWIRE [Rand et al. 2018],

presents methods for verifying that ancillae are discarded in the desired state, and implements a

verified compiler from classical functions to quantum oracles. Their semantics is parameterized

with a context that maps variables to wire indices, serving a similar purpose as our In, Out lists.

However, there is no notion for semantic preservation between quantum circuits in ReQWIRE,

and it is not clear to us how their approach facilitates qubit recycling. VOQC [Hietala et al. 2021]

and Giallar [Tao et al. 2022] aim to verify practical quantum circuit optimizers [Aleksandrowicz

et al. 2019; Nam et al. 2018]. VOQC follows a CompCert-like approach that verifies each single

optimization pass manually using sophisticated tactics; while Giallar seeks an almost automatic

solution. As discussed previously, the verification techniques in these two works are not directly

applicable to qubit recycling, where renaming and dynamic qubit allocation/discard are involved.

9 CONCLUSION AND FUTUREWORK
Qubit recycling involves finding a topologically identical quantum circuit that maximizes qubit reuse.

By translating the problem to a matrix triangularization problem based on qubit dependency graphs,

we demonstrated the NP-hardness of this problem. Additionally, we have developed a certified qubit

recycler in Coq, This qubit recycler integrates validation and verification approaches. Byproducts

of the certification include a verified implementation of Kahn’s topological sort algorithm, and a

mechanized proof of a version of the coherence theorem of symmetric monoidal categories. Our

qubit recycler reaches optimal solutions for the majority circuits in the RevLib benchmark.

While our focus has been on topologically identical quantum circuits, where qubit reuse op-

portunities arise from disjoint instruction swaps, it is possible to further enhance qubit reuse

24 Hanru Jiang

when a broader class of semantically equivalent quantum circuits is introduced. Potential future

directions include extending the QDG-based approach by making use of a semantic domain with

richer structures e.g., the ZX-calculus [Coecke and Kissinger 2017] and Quon [Liu et al. 2017], and

fostering qubit reuse opportunities using additional circuit transformations guided by QDGs.

ACKNOWLEDGMENTS
We thank our anonymous referees for their suggestions and comments on earlier versions of this

paper. We also thank Yuze Ruan and Yilong Wang for technical discussions. This work is partially

supported by grants from National Natural Science Foundation of China under Grant No. 62202265,

and from Beijing Natural Science Foundation under Grant No. Z220002.

DATA AVAILABILITY
An artifact containing our implementation, benchmarks and corresponding Coq proofs is publicly

available on Zenodo [Jiang 2024].

REFERENCES
Samson Abramsky and Bob Coecke. 2004. A Categorical Semantics of Quantum Protocols. In 19th IEEE Symposium on

Logic in Computer Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings. IEEE Computer Society, 415–425.

https://doi.org/10.1109/LICS.2004.1319636

Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello, Yael Ben-Haim, David Bucher, Francisco Jose

Cabrera-Hernández, Jorge Carballo-Franquis, Adrian Chen, Chun-Fu Chen, Jerry M. Chow, Antonio D. Córcoles-Gonzales,

Abigail J. Cross, Andrew Cross, Juan Cruz-Benito, Chris Culver, Salvador De La Puente González, Enrique De La Torre,

Delton Ding, Eugene Dumitrescu, Ivan Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage, Albert Frisch, Andreas

Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-Mosquera, Donny Greenberg, Ikko Hamamura, Vojtech Havlicek,

Joe Hellmers, Łukasz Herok, Hiroshi Horii, Shaohan Hu, Takashi Imamichi, Toshinari Itoko, Ali Javadi-Abhari, Naoki

Kanazawa, Anton Karazeev, Kevin Krsulich, Peng Liu, Yang Luh, Yunho Maeng, Manoel Marques, Francisco Jose

Martín-Fernández, Douglas T. McClure, David McKay, Srujan Meesala, Antonio Mezzacapo, Nikolaj Moll, Diego Moreda

Rodríguez, Giacomo Nannicini, Paul Nation, Pauline Ollitrault, Lee James O’Riordan, Hanhee Paik, Jesús Pérez, Anna

Phan, Marco Pistoia, Viktor Prutyanov, Max Reuter, Julia Rice, Abdón Rodríguez Davila, Raymond Harry Putra Rudy,

Mingi Ryu, Ninad Sathaye, Chris Schnabel, Eddie Schoute, Kanav Setia, Yunong Shi, Adenilton Silva, Yukio Siraichi,

Seyon Sivarajah, John A. Smolin, Mathias Soeken, Hitomi Takahashi, Ivano Tavernelli, Charles Taylor, Pete Taylour,

Kenso Trabing, Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe Vuillot, Jonathan A. Wildstrom, Jessica

Wilson, Erick Winston, Christopher Wood, Stephen Wood, Stefan Wörner, Ismail Yunus Akhalwaya, and Christa Zoufal.

2019. Qiskit: An Open-source Framework for Quantum Computing. https://doi.org/10.5281/zenodo.2562111

Matthew Amy, Martin Roetteler, and Krysta M. Svore. 2017. Verified Compilation of Space-Efficient Reversible Circuits. In

Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings,

Part II (Lecture Notes in Computer Science, Vol. 10427), Rupak Majumdar and Viktor Kuncak (Eds.). Springer, 3–21.

https://doi.org/10.1007/978-3-319-63390-9_1

Jrgen Bang-Jensen and Gregory Z. Gutin. 2008. Digraphs: Theory, Algorithms and Applications. https://doi.org/10.1007/978-

1-84800-998-1

Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, Antonia Chmiela, João Dionísio, Tim Donkiewicz, Jasper van

Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros Gleixner, Christoph Graczyk, Katrin Halbig, Ivo Hedtke,

Alexander Hoen, Christopher Hojny, Rolf van der Hulst, Dominik Kamp, Thorsten Koch, Kevin Kofler, Jurgen Lentz,

Julian Manns, Gioni Mexi, Erik Mühmer, Marc E. Pfetsch, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Mark Turner,

Stefan Vigerske, Dieter Weninger, and Lixing Xu. 2024. The SCIP Optimization Suite 9.0. Technical Report. Optimization

Online. https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/

Graham R. Brightwell and Peter Winkler. 1991. Counting Linear Extensions is #P-Complete. In Proceedings of the 23rd

Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, Cris Koutsougeras and

Jeffrey Scott Vitter (Eds.). ACM, 175–181. https://doi.org/10.1145/103418.103441

John Bruno and Ravi Sethi. 1976. Code Generation for a One-Register Machine. J. ACM 23, 3 (jul 1976), 502–510.

https://doi.org/10.1145/321958.321971

Bob Coecke and Aleks Kissinger. 2017. Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic

Reasoning. Cambridge University Press. https://doi.org/10.1017/9781316219317

https://doi.org/10.1109/LICS.2004.1319636
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.1007/978-3-319-63390-9_1
https://doi.org/10.1007/978-1-84800-998-1
https://doi.org/10.1007/978-1-84800-998-1
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://doi.org/10.1145/103418.103441
https://doi.org/10.1145/321958.321971
https://doi.org/10.1017/9781316219317

Qubit Recycling Revisited 25

Matthew DeCross, Eli Chertkov, Megan Kohagen, and Michael Foss-Feig. 2023. Qubit-Reuse Compilation with Mid-Circuit

Measurement and Reset. Phys. Rev. X 13 (Dec 2023), 041057. Issue 4. https://doi.org/10.1103/PhysRevX.13.041057

Yongshan Ding, Xin-Chuan Wu, Adam Holmes, Ash Wiseth, Diana Franklin, Margaret Martonosi, and Frederic T. Chong.

2020. SQUARE: Strategic Quantum Ancilla Reuse for Modular Quantum Programs via Cost-Effective Uncomputation. In

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). 570–583. https://doi.org/10.1109/

ISCA45697.2020.00054

Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. 2016. Tensor categories. American Mathematical Soc.

https://bookstore.ams.org/surv-205

Guillaume Fertin, Irena Rusu, and Stéphane Vialette. 2015. Obtaining a Triangular Matrix by Independent Row-Column

Permutations. In Algorithms and Computation - 26th International Symposium, ISAAC 2015, Nagoya, Japan, December

9-11, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9472), Khaled M. Elbassioni and Kazuhisa Makino (Eds.).

Springer, 165–175. https://doi.org/10.1007/978-3-662-48971-0_15

Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. 2012. Surface codes: Towards practical

large-scale quantum computation. Phys. Rev. A 86 (Sep 2012), 032324. Issue 3. https://doi.org/10.1103/PhysRevA.86.032324

Ramaswamy Govindarajan, Hongbo Yang, José Nelson Amaral, Chihong Zhang, and Guang R. Gao. 2003. Minimum Register

Instruction Sequencing to Reduce Register Spills in Out-of-Order Issue Superscalar Architectures. IEEE Trans. Computers

52, 1 (2003), 4–20. https://doi.org/10.1109/TC.2003.1159750

Ramsey W. Haddad. 1990. Triangularization: a two-processor scheduling problem. Ph. D. Dissertation. Stanford University,

USA. https://searchworks.stanford.edu/view/507223

Chris Heunen and Jamie Vicary. 2019. Categories for Quantum Theory: An Introduction. Oxford University Press. https:

//doi.org/10.1093/oso/9780198739623.001.0001

Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. 2021. A Verified Optimizer for Quantum

Circuits. Proc. ACM Program. Lang. 5, POPL, Article 37 (Jan 2021), 29 pages. https://doi.org/10.1145/3434318

Fei Hua, Yuwei Jin, Yan-Hao Chen, Suhas Vittal, Kevin Krsulich, Lev S. Bishop, John Lapeyre, Ali Javadi-Abhari, and Eddy Z.

Zhang. 2023. CaQR: A Compiler-Assisted Approach for Qubit Reuse through Dynamic Circuit. In Proceedings of the 28th

ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3,

ASPLOS 2023, Vancouver, BC, Canada, March 25-29, 2023, Tor M. Aamodt, Natalie D. Enright Jerger, and Michael M. Swift

(Eds.). ACM, 59–71. https://doi.org/10.1145/3582016.3582030

Dominik Janzing, Pawel Wocjan, and Thomas Beth. 2003. Identity check is QMA-complete. https://doi.org/10.48550/ARXIV.

QUANT-PH/0305050

Hanru Jiang. 2024. PLDI2024 Artifact: Qubit Recycling Revisited. https://doi.org/10.5281/zenodo.10721283

A. B. Kahn. 1962. Topological Sorting of Large Networks. Commun. ACM 5, 11 (nov 1962), 558–562. https://doi.org/10.

1145/368996.369025

Aleks Kissinger and John van de Wetering. 2020. PyZX: Large Scale Automated Diagrammatic Reasoning. Electronic

Proceedings in Theoretical Computer Science 318 (May 2020), 229–241. https://doi.org/10.4204/eptcs.318.14

Elena Di Lavore and Paweł Sobociński. 2023. Monoidal Width. arXiv:2212.13229 [cs.LO]

Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM 52, 7 (Jul 2009), 107–115. https://doi.org/10.

1145/1538788.1538814

Zhengwei Liu, Alex Wozniakowski, and Arthur M. Jaffe. 2017. Quon 3D language for quantum information. Pro-

ceedings of the National Academy of Sciences 114, 10 (2017), 2497–2502. https://doi.org/10.1073/pnas.1621345114

arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.1621345114

Yunseong Nam, Neil J. Ross, Yuan Su, AndrewM. Childs, and Dmitri Maslov. 2018. Automated optimization of large quantum

circuits with continuous parameters. npj Quantum Information 4, 1 (2018), 23. https://doi.org/10.1038/s41534-018-0072-4

Alexandru Paler, Robert Wille, and Simon J. Devitt. 2016. Wire recycling for quantum circuit optimization. Phys. Rev. A 94

(Oct 2016), 042337. Issue 4. https://doi.org/10.1103/PhysRevA.94.042337

Alex Parent, Martin Roetteler, and Krysta M. Svore. 2015. Reversible circuit compilation with space constraints.

arXiv:1510.00377 [quant-ph]

Daniel Patterson and Amal Ahmed. 2019. The next 700 Compiler Correctness Theorems (Functional Pearl). Proc. ACM

Program. Lang. 3, ICFP, Article 85 (Jul 2019), 29 pages. https://doi.org/10.1145/3341689

John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum 2 (Aug. 2018), 79. https://doi.org/10.22331/q-

2018-08-06-79

Robert Rand, Jennifer Paykin, Dong-Ho Lee, and Steve Zdancewic. 2018. ReQWIRE: Reasoning about Reversible Quantum

Circuits. In Proceedings 15th International Conference on Quantum Physics and Logic, QPL 2018, Halifax, Canada, 3-7th

June 2018 (EPTCS, Vol. 287), Peter Selinger and Giulio Chiribella (Eds.). 299–312. https://doi.org/10.4204/EPTCS.287.17

Silvain Rideau and Xavier Leroy. 2010. Validating Register Allocation and Spilling. In Compiler Construction, 19th International

Conference, CC 2010, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos,

Cyprus, March 20-28, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6011), Rajiv Gupta (Ed.). Springer, 224–243.

https://doi.org/10.1103/PhysRevX.13.041057
https://doi.org/10.1109/ISCA45697.2020.00054
https://doi.org/10.1109/ISCA45697.2020.00054
https://bookstore.ams.org/surv-205
https://doi.org/10.1007/978-3-662-48971-0_15
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1109/TC.2003.1159750
https://searchworks.stanford.edu/view/507223
https://doi.org/10.1093/oso/9780198739623.001.0001
https://doi.org/10.1093/oso/9780198739623.001.0001
https://doi.org/10.1145/3434318
https://doi.org/10.1145/3582016.3582030
https://doi.org/10.48550/ARXIV.QUANT-PH/0305050
https://doi.org/10.48550/ARXIV.QUANT-PH/0305050
https://doi.org/10.5281/zenodo.10721283
https://doi.org/10.1145/368996.369025
https://doi.org/10.1145/368996.369025
https://doi.org/10.4204/eptcs.318.14
https://arxiv.org/abs/2212.13229
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1073/pnas.1621345114
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.1621345114
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1103/PhysRevA.94.042337
https://arxiv.org/abs/1510.00377
https://doi.org/10.1145/3341689
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.4204/EPTCS.287.17

26 Hanru Jiang

https://doi.org/10.1007/978-3-642-11970-5_13

Movahhed Sadeghi, Soheil Khadirsharbiyani, and Mahmut Taylan Kandemir. 2022. Quantum Circuit Resizing.

arXiv:2301.00720 [cs.ET]

Peter Selinger. 2004. Towards a Quantum Programming Language. Mathematical. Structures in Comp. Sci. 14, 4 (aug 2004),

527–586. https://doi.org/10.1017/S0960129504004256

Peter Selinger. 2005. Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract). In Proceedings

of the 3rd International Workshop on Quantum Programming Languages, QPL 2005, DePaul University, Chicago, USA,

June 30 - July 1, 2005 (Electronic Notes in Theoretical Computer Science, Vol. 170), Peter Selinger (Ed.). Elsevier, 139–163.

https://doi.org/10.1016/j.entcs.2006.12.018

Runzhou Tao, Yunong Shi, Jianan Yao, Xupeng Li, Ali Javadi-Abhari, Andrew W. Cross, Frederic T. Chong, and Ronghui Gu.

2022. Giallar: push-button verification for the qiskit Quantum compiler. In PLDI ’22: 43rd ACM SIGPLAN International

Conference on Programming Language Design and Implementation, San Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala

and Isil Dillig (Eds.). ACM, 641–656. https://doi.org/10.1145/3519939.3523431

Sid Ahmed Ali Touati. 2005. On the Optimality of Register Saturation. Electron. Notes Theor. Comput. Sci. 132, 1 (2005),

131–148. https://doi.org/10.1016/j.entcs.2005.01.033

John Wiegley. 2022. An axiom-free formalization of category theory in Coq. https://github.com/jwiegley/category-theory.

Version 1.0.0.

H.S. Wilf. 1997. On Crossing Numbers, and some Unsolved Problems. Cambridge University Press, 557–562. https:

//doi.org/10.1017/CBO9780511662034.049

Robert Wille, Daniel Große, Lisa Teuber, Gerhard W. Dueck, and Rolf Drechsler. 2008. RevLib: An Online Resource for

Reversible Functions and Reversible Circuits. In 38th IEEE International Symposium on Multiple-Valued Logic (ISMVL

2008), 22-23 May 2008, Dallas, Texas, USA. IEEE Computer Society, 220–225. https://doi.org/10.1109/ISMVL.2008.43

https://doi.org/10.1007/978-3-642-11970-5_13
https://arxiv.org/abs/2301.00720
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1016/j.entcs.2006.12.018
https://doi.org/10.1145/3519939.3523431
https://doi.org/10.1016/j.entcs.2005.01.033
https://doi.org/10.1017/CBO9780511662034.049
https://doi.org/10.1017/CBO9780511662034.049
https://doi.org/10.1109/ISMVL.2008.43

Qubit Recycling Revisited 27

A LEMMAS USED IN SEC. 4 AND 5
Lemma A.1. For any simple circuits 𝐶 and 𝐶′ whose instructions are unique, 𝐶′ is a topological

sorting of 𝐶 under ≺𝐶 if and only if 𝐶′ ∼ 𝐶 .

Proof. It suffices to prove that: for any adjacent instructions 𝑖 and 𝑖′ in a topological sorting 𝐶′

of 𝐶 under ≺𝐶 ,

𝑖 ## 𝑖′ ⇔ ¬((𝑖 ≺𝐶 𝑖′) ∨ (𝑖′ ≺𝐶 𝑖)) . (2)

Equation 2 is adequate because it is known that given topological sort 𝐶 of a digraph 𝐷 , another

sequence 𝐶′ is a topological sort of 𝐷 if and only if 𝐶′ can be obtained from 𝐶 by swapping

consecutive vertices that are not connected by an edge in 𝐷 , and obviously𝐶 is a topological sorting

of 𝐷 = ({instr ∈ 𝐶}, ≺𝐶).
We prove Equation 2 below.

• “⇒”: By definition, 𝑖 ≺𝐶 𝑖′ implies args(𝑖) ∩ args(𝑖′) ≠ ∅, which contradicts with 𝑖 ## 𝑖′.
• “⇐”: If ¬(𝑖 ## 𝑖′), there is 𝑞 ∈ args(𝑖) ∩ args(𝑖′). Without loss of generality, assume

𝐶′ = 𝐶1; 𝑖; 𝑖
′
;𝐶2. Then we have 𝑖 ≺𝐶 𝑖′ by definition, a contradiction.

□

Lemma A.2. For any 𝐺 = (𝑉 ,→) such that ∀𝑣 ∈ 𝑉 . 𝑣 → 𝑣 , let 𝐶 = ConstructCirc(𝐺), we have

∀𝑣, 𝑣 ′, 𝑣 .CX[𝑣, 𝑣] ≺𝐶 CX[𝑣 ′, 𝑣] =⇒ 𝑣 → 𝑣 ′ .

Proof. Obvious by construction of 𝐶 . □

Lemma A.3. For any 𝐺 = (𝑉 ,→) such that ∀𝑣 ∈ 𝑉 . 𝑣 → 𝑣 , let 𝐶 = ConstructCirc(𝐺), we have

∀𝑣, 𝑣 ′, 𝑣, 𝑣 ′′ .CX[𝑣, 𝑣] ≺𝐶 CX[𝑣 ′, 𝑣] (≺𝐶)+discard[𝑣 ′′] =⇒ 𝑣 ′ = 𝑣 ′′ .

Proof. Obvious by construction of 𝐶 . □

Lemma A.4. For any 𝐺 = (𝑉 ,→) where 𝑣 → 𝑣 for any 𝑣 ∈ 𝑉 , let 𝐶 = ConstructCirc(𝐺), then
𝐺 = QDG(𝐶) [𝑉].

Proof. By construction of 𝐶 , for any 𝑣 ∈ 𝑉 , alloc[𝑣] and discard[𝑣] is in 𝐶 . By definition of

QDG, it suffices to show that

∀𝑣, 𝑣 ′ ∈ 𝑉 . 𝑣 → 𝑣 ′ ⇔ alloc[𝑣] (≺𝐶)+discard[𝑣 ′] .

If 𝑣 = 𝑣 ′, the result is obvious by construction of 𝐶 . We consider the case when 𝑣 ≠ 𝑣 ′.

• “⇒”: By construction of 𝐶 , for each 𝑣 → 𝑣 ′ such that 𝑣 ≠ 𝑣 ′, there is 𝑣 such that

𝐶 = 𝐶1;CX [𝑣, 𝑣];𝐶2;CX [𝑣 ′, 𝑣];𝐶3,

and 𝑣 occur only in CX [𝑣, 𝑣] and CX [𝑣 ′, 𝑣]. Thus we have

args(CX [𝑣, 𝑣]) ∩ args(CX [𝑣 ′, 𝑣]) ∩ args(𝐶2) = {𝑣} ∩ args(𝐶2) = ∅.

By definition of ≺𝐶 and 𝐶 is simple, we have

alloc[𝑣] (≺𝐶)+CX [𝑣, 𝑣] ≺𝐶 CX [𝑣 ′, 𝑣] (≺𝐶)+discard[𝑣 ′] .

That is, alloc[𝑣] (≺𝐶)+discard[𝑣 ′].

28 Hanru Jiang

• “⇐”: Given alloc[𝑣] (≺𝐶)+discard[𝑣 ′] and 𝑣 ≠ 𝑣 ′, then by construction of 𝐶 there is 𝑣 such

that alloc[𝑣] ≺𝐶 CX [𝑣, 𝑣] and
CX [𝑣, 𝑣] (≺𝐶)+discard[𝑣 ′] .

We prove by induction to show

∀𝑣 ≠ 𝑣 ′, 𝑣 .CX [𝑣, 𝑣] (≺𝐶)+discard[𝑣 ′] =⇒ 𝑣 → 𝑣 ′ .

– Base case: CX [𝑣, 𝑣] ≺𝐶 discard[𝑣 ′].
Since 𝑣 ≠ 𝑣 ′ and 𝑣 ≠ 𝑣 ′, ¬(CX [𝑣, 𝑣] ≺𝐶 discard[𝑣 ′]). The goal vacuously holds.

– Inductive step: CX [𝑣, 𝑣] ≺𝐶 𝑖 (≺𝐶)+discard[𝑣 ′]
We prove by case study on 𝑖 . By definition of ≺𝐶 and construction of 𝐶 , only the

following two cases are possible.

∗ 𝑖 = CX [𝑣 ′′, 𝑣], 𝑣 ′′ ≠ 𝑣 :

That is, CX [𝑣, 𝑣] ≺𝐶 CX [𝑣 ′′, 𝑣] ≺𝐶
+ discard[𝑣 ′]. By Lemma A.2, 𝑣 → 𝑣 ′′; by

Lemma A.3, we have 𝑣 ′ = 𝑣 ′′. Thus 𝑣 → 𝑣 ′.
∗ 𝑖 = CX [𝑣, 𝑣 ′], 𝑣 ′ ≠ 𝑣 :

We have CX [𝑣, 𝑣 ′] (≺𝐶)+discard[𝑣 ′], by induction hypothesis we have 𝑣 → 𝑣 ′.

□

Lemma A.5. A (0, 1)-matrix 𝐴 is nilpotent if and only if there exists a permutation matrix 𝑃 such

that 𝑃𝑇𝐴𝑃 is strictly upper (or lower) triangular.

Proof. Consider the corresponding digraph 𝐺 of 𝐴.

𝐴 is nilpotent⇔ 𝐺 is simple and acyclic

⇔ there is a permutation of vertices to obtain a topological sort of 𝐺

⇔ ∃𝐵, 𝑃 . 𝐵 = 𝑃𝑇𝐴𝑃 ∧ ∀𝑖 ≥ 𝑗 . 𝐵𝑖 𝑗 = 0 ⇔ ∃𝑃 . 𝑃𝑇𝐴𝑃 is strict upper triangular.

□

Qubit Recycling Revisited 29

B PROOF OF LM 5.7
B.1 Notations and Preparation
We denote the set of𝑚 × 𝑛 matrices over the field F2 of 2 elements (i.e., 0 and 1) by𝑀𝑚,𝑛 (F2), or
𝑀𝑛 (F2) for short when𝑚 = 𝑛. Throughout this section, 𝑃 and 𝑄 denote the permutation matrices,

𝑃𝜎 denotes the permutation matrix corresponding to a permutation 𝜎 , e.g., (𝑘 𝑙) is the permutation

that swaps 𝑘-th and 𝑙 th elements, while (𝑘 𝑘) is identity; and denote the upper and lower

triangular matrices, respectively; 0𝑚×𝑛 and 1𝑚×𝑛 denote all 0s and all 1s matrices of size𝑚 × 𝑛,
respectively. Subscripts𝑚 × 𝑛 are omitted when it is clear from the context.

For any 𝐴, 𝐵 ∈ 𝑀𝑚,𝑛 (F2), we use 𝐴 ∼ 𝐵 to denote the relation where 𝐵 can be obtained by

independently permuting rows and columns of 𝐴:

𝐴 ∼ 𝐵 iff (∃𝑃,𝑄. 𝑃𝐴𝑄 = 𝐵) .
It is straight forward to check that the following propositions hold.

Proposition B.1. The relation ∼ is an equivalence relation.

Proposition B.2. For any 𝐴, 𝐵 ∈ 𝑀𝑚,𝑛 (F2) and permutations 𝑃,𝑄 , 𝐴 ∼ 𝐵 ⇔ 𝑃𝐴𝑄 ∼ 𝑃𝐵𝑄 .

Proposition B.3. ∼ =

[
1

. .
.

1

] [
1

. .
.

1

]
.

The next proposition shows that ∼ is preserved by padding constant columns or rows.

Proposition B.4. For any 𝑘 ∈ N, 𝑏 ∈ F2, and 𝐴, 𝐵 ∈ 𝑀𝑚,𝑛 (F2),
[𝑏1𝑚×𝑘 𝐴] ∼ [𝑏1𝑚×𝑘 𝐵] ⇔ 𝐴 ∼ 𝐵 ⇔

[
𝑏1𝑘×𝑛
𝐴

]
∼

[
𝑏1𝑘×𝑛

𝐵

]
.

Proof. The second⇔ is derived from the first by taking transposes.

We prove [𝑏1𝑚×𝑘 𝐴] ∼ [𝑏1𝑚×𝑘 𝐵] ⇔ 𝐴 ∼ 𝐵 by induction on 𝑘 . The base case is trivial. The

inductive case reduces to prove [𝑏1𝑚×1 𝐴] ∼ [𝑏1𝑚×1 𝐵] ⇔ 𝐴 ∼ 𝐵 by induction hypothesis.

“⇒”: By assumption, ∃𝑃,𝑄. 𝑃 [𝑏1𝑚×1 𝐴]𝑄 = [𝑏1𝑚×1 𝑃𝐴]𝑄 = [𝑏1𝑚×1 𝐵]. Suppose𝑄 = 𝑃𝜎 for some

𝜎 , then the column 𝜎 (1) of [𝑏1𝑚×1 𝐵] is equal to 𝑏1𝑚×1, its first row. Thus [𝑏1𝑚×1 𝐵] =
[𝑏1𝑚×1 𝐵] 𝑃 (1 𝜎 (1)) = [𝑏1𝑚×1 𝑃𝐴] 𝑃𝜎𝑃 (1 𝜎 (1)) = [𝑏1𝑚×1 𝑃𝐴𝑃𝜎 ′], for some 𝜎 ′.

“⇐”: By assumption, ∃𝑃,𝑄. 𝐵 = 𝑃𝐴𝑄 . Thus 𝑃 [𝑏1𝑚×1 𝐴]
[
𝐼
𝑄

]
= [𝑏𝑃1𝑚×1𝐼 𝑃𝐴𝑄] = [𝑏1𝑚×1 𝐵]. □

B.2 The Proof
With these notations, Lm 5.7 states that for any instance 𝐴 ∈ 𝑀𝑛 (F2) of Wilf’s question, we can

find an instance (𝐴,𝑘) ∈ 𝑀𝑛′ (F2) × N of the triangularization problem in Poly(𝑛) time, such that

𝐴 ∼ ⇐⇒ 𝐴 ∼
[
∗
[0 0

0

]
𝑘×𝑘∗ ∗

]
.

Proof. Given 𝐴 ∈ 𝑀𝑛 (F2), let 𝑘 = 𝑛 + 1, and construct 𝐴 blow:

𝐴 F

[
1(𝑛+1)×(𝑛+1)

[
0 0

𝐴 0
]

1(𝑛+1)×(𝑛+1) 1(𝑛+1)×(𝑛+1)

]
∈ 𝑀2(𝑛+1) (F2)

It is evident that the diagonal elements of 𝐴 are 1s, making (𝐴,𝑘) a valid instance for the triangu-

larization problem. It is also evident that the construction is of polynomial time.

To complete the proof, it suffices to show that

𝐴 ∼
(1)
⇐⇒

[0 0

𝐴 0𝑇
]
∼

[0 0

0𝑇
] (2)
⇐⇒ 𝐴 ∼

[
1

[
0 0

𝑛×𝑛 0𝑇

]
1 1

]
(3)
⇐⇒ 𝐴 ∼

[
∗

[
0 0

𝑛×𝑛 0𝑇

]
∗ ∗

]
.

Here (1), (2) follows from Prop. B.1-B.4; (3) is evident by counting constant columns/rows. □

	Abstract
	1 Introduction
	2 Informal Development
	2.1 Background: Quantum Circuits and the Qubit Recycling Problem
	2.2 Challenges and Our Approach

	3 Basic settings
	3.1 Syntax of Quantum Circuits
	3.2 The Qubit Recycling Problem

	4 Qubit Dependency Graphs
	5 Qubit Recycling is NP-hard
	5.1 Recycling on QDGs Reduces to Qubit Recycling
	5.2 Wilf's Question Reduces to Recycling on QDGs

	6 Certified Qubit Recycler
	6.1 Instrumented Circuits and Semantic Preservation
	6.2 Rewriting rules
	6.3 Sorting and Validity Checking
	6.4 Reusing by Renaming
	6.5 Final Theorem and Coq Development

	7 Solver for Finding Recycling Strategies
	7.1 The Algorithm
	7.2 An ILP Model and Upper-Bound Estimator for Qubit Recycling
	7.3 Experimental Evaluation

	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References
	A Lemmas Used in Sec. 4 and 5
	B Proof of Lm 5.7
	B.1 Notations and Preparation
	B.2 The Proof

