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Reducing the width of quantum circuits is crucial due to limited number of qubits in quantum devices. This

paper revisit an optimization strategy known as qubit recycling (alternatively wire-recycling or measurement-

and-reset), which leverages gate commutativity to reuse discarded qubits, thereby reducing circuit width.

We introduce qubit dependency graphs (QDGs) as a key abstraction for this optimization. With QDG, we

isolate the computationally demanding components, and observe that qubit recycling is essentially a matrix

triangularization problem. Based on QDG and this observation, we study qubit recycling with a focus on

complexity, algorithmic, and verification aspects. Firstly, we establish qubit recycling’s NP-hardness through

reduction fromWilf’s question, another matrix triangularization problem. Secondly, we propose a QDG-guided

solver featuring multiple heuristic options for effective qubit recycling. Benchmark tests conducted on RevLib

illustrate our solver’s superior or comparable performance to existing alternatives. Notably, it achieves optimal

solutions for the majority of circuits. Finally, we develop a certified qubit recycler that integrates verification

and validation techniques, with its correctness proof mechanized in Coq.
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1 INTRODUCTION

Reducing the cost of a quantum circuit is crucial, particularly for near-term quantum computers
with limited computational resources [Preskill 2018]. One commonly used metric for assessing cost
is the circuit width, which corresponds to the number of qubits used in a quantum circuit. In fault-
tolerant quantum computing, where the overhead of a logical qubit using quantum error-correction
is substantial [Fowler et al. 2012], circuit width becomes particularly important.
Among the various approaches to minimizing circuit width, qubit recycling, also known as

wire recycling or reclaiming qubit via measurement-and-reset, has been found to be effective and
intuitive. Analytic analysis [DeCross et al. 2023] on well-structured circuit families showcased
its capacity to significantly reduce circuit width, sometimes exponentially or to a constant size.
Empirical evaluation [DeCross et al. 2023; Hua et al. 2023; Paler et al. 2016] further indicated that
qubit recycling can achieve reductions in circuit width up to 80–90%.Moreover, recent research [Hua
et al. 2023] illustrated that leveraging mid-circuit measurement for qubit recycling might enhance
fidelity in specific circuits executed on real quantum hardware.
The idea behind qubit recycling is that once a qubit is measured and discarded, it becomes

disentangled from the other qubits and can be reused as a fresh qubit by resetting it. Qubit recycling
further leverages the commutativity of local quantum operations to create more opportunities for
qubit reuse, allowing for earlier measurements or deferring allocation.
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The above is an example illustrating a qubit recycling procedure, which rewrites the left most
circuit into the right most one. In each circuit, a horizontal line represents a qubit, a box represents
a quantum gate applied to the qubits it covers, and the gates are applied from left to right. Starting
from the left-most circuit, we first postpone the allocation (denoted by ◁) and bring forward the
measurement (denoted by ▷). When the measurement is earlier than the allocation, we reuse the
top qubit as the bottom one. As a result, the circuit width is reduced by one.
Despite its efficacy, qubit recycling remains an underexplored topic with several fundamental

questions yet to be answered, including:

(1) What is the computational complexity of minimizing circuit width using qubit recycling?

Previous works [DeCross et al. 2023; Hua et al. 2023; Paler et al. 2016] develop (exponential-
time) exact or heuristic-based algorithms for qubit recycling. However, the intrinsic difficulty
of this problem remains unclear.

(2) How can we ensure the correctness of a qubit recycler? Existing approaches on verified compi-
lation for quantum programs [Hietala et al. 2021; Tao et al. 2022] do not directly apply to
qubit recycling. These approaches primarily concentrate on rewriting-based optimizations
that preserve circuit width, while qubit recycling aims to reduce circuit width.

To better understand qubit recycling and address these questions, it is essential to have a problem
abstraction that isolates the computationally intensive part from simpler circuit rewritings based on
gate commutativity. With this in mind, we revisit qubit recycling and address the aforementioned
questions. The contribution includes:

• We identify computational dependencies between qubits as the key factor in qubit recycling
and formalize these dependencies using qubit dependency graphs (QDGs). A QDG concisely
captures the necessary information to determine valid qubit recycling strategies, specifying
which qubit can be reused by another. With the matrix representation of QDGs, we observe
that qubit recycling is essentially a matrix triangularization problem. This observation proves
valuable in studying complexity, algorithm design, and verification of qubit recyclers.
• We prove that qubit recycling is NP-hard. The proof is based on a reduction from Wilf’s
question, another triangularization problem which is known to be NP-complete.
• Based on the structure of the triangularization problem, we develop an efficient solver featur-
ing multiple heuristics. To evaluate the optimality of the solutions, we employ SCIP [Bolusani
et al. 2024] to solve the original problem, or provide an estimated upper-bound on the size of
optimal solutions in case where finding optimal solutions is not feasible. Evaluation on the
RevLib [Wille et al. 2008] benchmark shows that our solver consistently yields equally good
or superior solutions when compared to existing methods, and achieves optimal solutions
for the majority of the circuits.
• We formalize a weaker correctness criterion for quantum circuit optimizations, allowing for
qubit renaming and reuse. To support dynamic qubit allocation and discard, our semantics
decouple qubit identity from their physical location by explicitly incorporating I/O qubits in
the circuit. Our correctness formulation is transitive and congruent to sequential composition,
facilitating modular verification of optimization passes.
• We propose a certified qubit recycler design that integrates compiler verification and valida-
tion techniques. This recycler comprises an untrusted solver handling the computationally
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�bit Recycling Revisited 198:3

intensive task of finding recycling strategies, and a verified circuit rewriter which also
validates the recycling strategy. The validation process aligns with part of the circuit trans-
formations, namely topological sorting. This is the point where we integrate verification and
validation in a single module. This approach avoids the need to individually verify the solver,
and ensures our proof is resilient to potential future updates to the solver.
• We implement the certified qubit recycler in Coq. Byproducts of the Coq development include
a verified Kahn’s algorithm for topological sorting, and a version of the coherence theorem
for symmetric monoidal categories.

This work focuses on qubit reuse independent of considerations of the architecture of a quantum
computer. In addition, this work focuses solely on qubit reuse through topological deformation,
without considering other non-trivial semantic-based circuit rewritings such as CNOT cancellations.

Outline. Sec. 2 overviews the main results. Sec.3 presents the necessary language and problem
settings. Subsequently, Sec.4 formalizes QDGs, and Sec.5 proves the NP-hardness of qubit recycling.
We then proceed to develop the certified qubit recycler in Sec.6. Finally, we present and evaluate
our algorithms and ILP model for qubit recycling in Sec. 7, and discuss related work in Sec.8.

2 INFORMAL DEVELOPMENT

In this section, we first briefly overview qubit recycling (Sec.2.1), then outline the challenges
associated with addressing the questions raised in Sec.1 and present our approaches to tackle them
(Sec.2.2). Throughout this section, we use Fig.1 as a running example.

0 • • •
1 ◁ ▷

2 ◁ ▷

3 ◁

(a) Input circuit.

• • •
◁ ▷

◁ ▷

◁

(b) Topological deformation.

• • •
◁ ▷ ◁ ▷ ◁

(c) Renaming and reusing.

input 0
△

�-

▽

�-

△

▽

�-

△

output 0, 3

(d) DAG repr. of Fig. 1a.

Fig. 1. A running example of qubit recycling.

2.1 Background: �antum Circuits and the�bit Recycling Problem

Quantum circuits. Quantum programs are commonly represented using quantum circuits, which
describe a sequence of quantum operations or gates. For instance, Fig.1a is a 4-qubit quantum circuit.
Each horizontal line in the circuit corresponds to a qubit, numbered as 0, 1, 2, and 3. Quantum
gates are applied from left to right. A ◁ symbol represents the allocation of the qubit, while a ▷
symbol represents a discard gate. The discard gate effectively measures the qubit and discards the
measurement result. A qubit used without allocation (e.g, qubit 0) is considered an input qubit, while
a qubit lacking a discard gate (e.g. qubit 0 and 3) is referred to as output qubit. Input and output
qubits may differ. For unitary gates, we consider only arbitrary 2-qubit gates for now. The gate
used in Fig.1, is the CX gate, which is an arbitrary and irrelevant choice. It may help understanding
if we temporarily forget the semantics of CX . In Fig.1, the CX gate is denoted by a vertical line
connecting • and ⊕, indicating the two qubits it operates on. The vertical line has no effect on a
qubit if the crossing is not annotated with • or ⊕.

Semantic preserving circuit transformations. In this section, we do not delve into the semantics of
a circuit but instead introduce two transformations that preserve semantics.
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(a) Topological deformation.
Here −/−means one or more qubits.
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◁ · · ·
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(b) �bit reusing

Fig. 2. Semantic preserving circuit transformations.

• Topological deformation (Fig. 2a) states that two gates commute if they are applied on disjoint
sets of qubits. Two circuits are considered topologically identical if they are identical modulo
topological deformations.
• Qubit reusing (Fig. 2b) states that if the discard of a qubit precedes the allocation of another
qubit, the former can be reused as the latter. We use the symbol ≈ instead of = to indicate
that these circuits are not identical but observably equivalent modulo renaming of I/O qubits.
Qubit reusing leads to a reduction in circuit width by 1.

Qubit recycling. Given a quantum circuit, qubit recycling aims to find a topologically identical

circuit that maximizes qubit reusing, effectively minimizing the circuit width. Consider the circuit
in Fig.1a. One can first reshape the circuit using topological deformation and obtain Fig.1b. Then,
by renaming qubit 3 into 2 and qubit 2 into 1, we obtain Fig.1c with width reduced by 2.

2.2 Challenges and Our Approach

Our goal is to solve the qubit recycling problem correctly and efficiently. Specifically, we aim to
understand the problem’s complexity, develop a solution that runs in a reasonable time, and create
a certified optimizer for qubit recycling. In the following, we outline the challenges we face and
present our approaches to achieving these goals.

2.2.1 The Search Space is Too Large to Analyze. Given a circuit, the set of its topologically identical
circuits becomes unmanageably large as the number of gates increases. This set comprises all
the topological orderings of the circuit’s directed acyclic graph (DAG) representation. Merely
computing the size of this set is #P-complete [Brightwell and Winkler 1991]. For instance, the DAG
representation of the circuit Fig. 1a is shown in Fig. 1d. The number of all its topological orderings
is more than 100, which is significantly larger than 4, the qubit count.

Our approach: decomposition using recycling strategies. Our first observation is that by employing
recycling strategies, we can decompose the qubit recycling problem and avoid directly analyzing
the set of topologically identical circuits. A recycling strategy is an injective partial map on qubits,
where each pair @ ↩→ @′ in the map denotes that @′ reuses @. Every solution to the qubit recycling
problem corresponds to a recycling strategy ↩→, and its size |↩→| represents the number of reused
qubits. Conversely, given a valid ↩→, we can efficiently construct a solution of the same width.
Therefore, to find an optimal solution for qubit recycling, it suffices to:

(i) Find a largest valid recycling strategy ↩→ for the input circuit
(ii) Construct a solution using ↩→ and the input circuit.

Sub-problem (ii) can be solved in linear time, which is essentially topological sorting. Regarding
sub-problem (i), it is evident that the number of all recycling strategies (valid or invalid) is only
relevant to the circuit’s width. In practice, the search space for sub-problem (i) is much smaller
than that for the original qubit recycling problem.
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In our example circuit, since there are only 2 discarded qubits and 3 allocated qubits, there
are at most 12 recycling strategies of interest, and only 4 of them are valid: {1 ↩→ 2}, {2 ↩→ 3},
{1 ↩→ 3}, and {1 ↩→ 2, 2 ↩→ 3}. With the largest strategy, a solution for qubit recycling is obtained
by connecting discard of qubit 1 and 2 with allocation of qubit 2 and 3, respectively, then perform a
topological sort on it.

2.2.2 Gap 1: What is a Valid Recycling Strategy? A straightforward answer is a recycling strategy
corresponding to a solution of the original problem, but this requires finding a solution in the first
place. Intuitively, there should be a simpler way: a recycling strategy is essentially a relation over
qubits, it should be possible to check its validity knowing only qubit relationships.

Our approach: We introduce qubit dependency graphs (QDGs) as the key abstraction for analyzing
recycling strategies and verifying their validity. The QDG of a circuit � , denoted as QDG(�), is a
directed graph whose vertices represent the qubits in � . An edge @ → @′ in QDG(�) indicates a
computational dependency, it means that some computations involving @ must occur before those
involving @′. Concretely, @ → @′ if either (i) there is a path in the DAG representation of� from the
allocation of @ to discard of @′, or (ii) @ is an input qubit, or @′ is an output qubit. Such a dependency
prevents reusing @′ as @. Notably, each vertex in a QDG has a self-loop.
A recycling strategy ↩→ is valid for � turns out to be equivalent to

→↩→ is acyclic.

Here→ is the edges of QDG(�), and→↩→ is a composed graph where @ →↩→ @′′ if there exists @′

such that @ → @′ and @′ ↩→ @′′. This criteria is intuitively necessary: a cycle in→↩→ means there
is a circular dependency if we are to use this recycling strategy.

1 2

3

0

The QDG of our running example (Fig. 1a) is shown on the right, where
self-loops are omitted for clarity. This QDG hides irrelevant information in the
circuit. It is easy to verify that {1 ↩→ 2, 2 ↩→ 3} is a valid recycling strategy,
while 2 ↩→ 1 is not due to the presence of a cycle 1→ 2 ↩→ 1.

2.2.3 Gap 2: How to Find a Largest Valid Recycling Strategy? Although QDGs provide a more
concise criteria of valid recycling strategies, the set of recycling strategies is still quite large, with
$ (=!) possible injective maps over = qubits, and an even larger number of partial injective maps.
Brute-force search becomes unfeasible as the number of qubits grows.
This raises the following natural questions:

(a) Is it possible to efficiently find a largest recycling strategy?
(b) If not, can we find sufficiently good recycling strategies in a reasonable amount of time?

Answering question (a): hardness result. We prove that finding a largest recycling strategy for a
QDG is NP-hard. Our key observation is that finding a largest valid strategy for a QDG is equivalent
to a matrix triangularization problem. Note that a QDG→ and a recycling strategy ↩→ are directed
graphs. Suppose their adjacency matrices are � and ', respectively, then the following holds.

→↩→ is acyclic ⇔ �' is nilpotent ⇔ ∃% . %)�('%) is strictly lower triangular. (1)

Here % is a permutationmatrix. In particular, when' is a total injectivemap,'% is also a permutation
matrix. This equivalent form remind us of another problem: can a square matrix be made lower (or

upper) triangular by independently permuting its rows and columns?

The problem, known as Wilf’s question [Wilf 1997], has been studied extensively in Haddad’s
dissertation [Haddad 1990], and is known to be NP-complete [Fertin et al. 2015]. We prove that
Wilf’s question reduces to qubit recycling problem, demonstrating the latter is NP-hard. The main
difficulty in this reduction is that the QDG of a circuit is not an arbitrary square 0-1 matrix, for
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example: it has 1s on its diagonal. The reduction is achieved by appropriately padding a matrix
with 0s and 1s, such that it becomes the QDG of some circuit.

Answering question (b): QDG-based algorithms. Based on the previous observation, we develop
a solver for this NP-hard problem. The key insight for this solver comes from the triangulation
problem: once the permutation % in Eq. (1) is given, a recycling strategy ' with maximal size (that
is, the rank of matrix ') can be computed efficiently by putting 0s to the right-upper corner. The
problem is then reduced to finding an appropriate permutation % , which can be done either by a
heuristic, or by exhaustive search.

We demonstrate the procedure of solving ' given % over the adjacency matrix � of the QDG of
the circuit in Fig. 1a. The matrix � together with the indices of its rows and columns is shown in
Fig. 3a. Suppose we are given a permutation %) that maps rows 0123 into 3210, then %)� is shown
in Fig. 3b. The solver then try to put the 0s of each row to the right most columns. For example,
starting from the first row (with index 3), we put the two 0s to the right, as shown in Fig. 3c. We
then continue the process with the remaining submatrix with no background color, that is, we
remove the first row, and columns with value 1 in the first row. One more iteration gives the matrix
in Fig. 3d, and the procedure stops because no 0s can be found in the remaining submatrix.

0 1 2 3

0 1 1 1 1

1 1 1 0 1

2 1 0 1 1

3 1 0 0 1

(a)

0 1 2 3

3 1 0 0 1

2 1 0 1 1

1 1 1 0 1

0 1 1 1 1

(b)

0 3 2 1

3 1 1 0 0

2 1 1 1 0

1 1 1 0 1

0 1 1 1 1

(c)

0 3 2 1

3 1 1 0 0

2 1 1 1 0

1 1 1 0 1

0 1 1 1 1

(d)

Fig. 3. Demonstrating the solving procedure using the circuit in Fig. 1a

To get ', we read out the column and row indices of each diagonal elements (in green background)
in the strictly lower triangular submatrix at the right upper corner: (2, 3), (1, 2). It coincides with
the previous solution {1 ↩→ 2, 2 ↩→ 3}.
Recall that the solver is parameterized with a permutation % . To find % , it suffices to choose

one row at a time, which aligns with the solving procedure. For example, we can choose a row
that maximizes the remaining submatrix (greedy), or the number of 0s in the remaining submatrix
(heuristics). In addition, we may consult an additional iteration to break a tie (look ahead).

To evaluate the quality of solutions, we also design an ILP model for solving optimal solutions,
and an upper-bound estimator for the cases when solving optimal solution is unfeasible. Evaluation
(Sec.7.3) over the RevLib [Wille et al. 2008] benchmark shows that these methods can find optimal
solutions for most cases.

2.2.4 Generalizing Semantic Preservation. Now that we have an efficient algorithm to find good
solutions to the qubit recycling problem, it becomes crucial to ensure the correctness of its imple-
mentation. Therefore, we aim to develop a certified qubit recycler that guarantees its correctness.
To achieve this, we need to define the correctness for a qubit recycler in the first place.

The correctness of a circuit optimization is typically defined in terms of semantic preservation.
However, for qubit recycling, the existing notions of semantic preservation in compiler verification
for quantum programs, such as those used in VOQC [Hietala et al. 2021] and Giallar [Tao et al.
2022], do not directly apply.
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@0

@1

@2
*

@0

@1
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(a) Li�ing

�1 ⊒ �
′
1 �2 ⊒ �

′
2

�1;�2 ⊒ �
′
1;�
′
2

� ⊒ �′ �′ ⊒ �′′

� ⊒ �′′

(b) Compositionality

Fig. 4. Semantic li�ing and semantic preservation.

VOQC’s notion of semantic preservation is based on superoperators, with equality defined over
the denotations of circuits. However, VOQC explicitly ties qubit identity to their physical location
in a density matrix and maintains the dimension of quantum states during execution. This approach
makes it challenging to formalize the semantics of dynamic qubit allocation and discard, and it
does not support qubit renaming.
Similarly, Giallar focuses on local unitary rewritings and has a limited notion of semantic

preservation for unitary circuits. Since qubit recycling involves non-unitary operations like discard
and allocation, their notion of semantic preservation does not directly apply.

Our approach: instrumented circuits, semantic lifting and equivalence. We propose a weaker
criterion that allows for qubit renaming and reusing. We achieve this by decoupling qubit identity
from their physical location at the beginning or end of execution. This decoupling is accomplished
by explicitly instrumenting a circuit � with lists of input/output (I/O) qubits, which serve as maps
from qubit identities to their locations in the input/output states.

To define the semantics of a quantum gate with respect to these specific inputs and outputs, we
introduce a semantic lifting mechanism. This lifting is defined using permutations and is applied to
the qubits before and after the gate operation. For example, when applying a two-qubit unitary gate
* on qubits [@2, @0] in a state containing qubits [@0, @1, @2], we first permute @2 and @0 to adjacent
positions, apply the gate* , and then reverse the permutation. Fig. 4a depicts this lifting. This allows
us to define semantic preservation that is transitive and congruent to sequential composition.

In

In′

Out

Out′
�′

�

f ◦ 5 g ◦ 6

In our definition of semantic preservation, an instrumented cir-
cuit (�′, In′,Out′) preserves the semantics of (�, In,Out), denoted
as � ⊒ �′ omitting the I/O for short, if there exist bijections 5

and 6 (for renaming the qubits), and permutations f and g (for
positioning the qubits), satisfying:

(1) f ◦ 5 (In) = In′, and g ◦ 6(Out) = Out′, and
(2) if the input states are equivalent modulo f , the output states are equivalent modulo g .

This generalized notion can be roughly interpreted as the above commutative diagram. It allows
for qubit renaming and reusing while still preserving the effects on the input and output states
modulo permutation. It is congruent with sequential composition and is transitive, as shown in
Fig. 4b. This enables modular verification of an optimizer.

2.2.5 Verification versus Validation? When it comes to building a certified optimizing compiler [Leroy
2009; Rideau and Leroy 2010], we can either directly verify the compiler, or employ an untrusted
optimizer alongside a verified validator to validate the result. In the context of qubit recycling,
relying solely on verification or validation seems to be unsatisfying. On one hand, verifying the
correctness of the qubit recycler necessitates verifying the previously introduced algorithms con-
cerning QDG, which is time-consuming and sensitive to updates. On the other hand, validation
approaches may fall short in terms of completeness, as they may reject correct results. In fact, it
is generally impractical to require the validator to be complete: the task of checking the identity
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Rewriter

Input �

Solver(�)

Sort(↩→,�)

Rename(↩→,�′)

Abort

Output �′′

�

OK(�′)�

↩→

↩→

�′′

Fail

Fig. 5. Structure of the certified qubit recycler.

of two quantum circuits is generally challenging [Janzing et al. 2003], and existing translation
validation methods [Kissinger and van de Wetering 2020] may fail to identify equivalent circuits.

Our approach: integrating verification and validation. We design our optimizer to facilitate the
integration of verification and validation techniques, leveraging the benefits of both approaches.

The structure of our certified qubit recycler is illustrated in Fig. 5, each box is a component of the
recycler, and the labeled arrows represent the data flowing in and out of the components. Following
the decomposition in Sec. 2.2.1, our qubit recycler contains an untrusted Solver (the gray node)
that finds recycling strategies, and a verified Rewriter (the green nodes) that rewrites the circuit
based on the solver’s outputs. The Rewriter takes a circuit � and a recycling strategy ↩→ as its
inputs, and either outputs an optimized circuit �′′ or aborts indicating ↩→ is invalid.
The Rewriter consists of a Sort module that handles topological deformation (Fig. 2a), and a

Renamemodule that applies the qubit reusing transformation (Fig. 2b). The Sortmodule is the point
where we integrate validation and verification techniques. In essence, Sort performs a topological
sorting on a DAG circuit with additional recycling edges, utilizing Kahn’s algorithm [Kahn 1962].
Since topological sorting simultaneously sorts the circuit and detects cycles, Sort effectively checks
the validity of a recycling strategy while performing topological deformation.
We implemented the Rewriter in Coq, and verified its correctness as both a validator and a

circuit rewriter. That is, whenever Rewriter successfully produces a circuit �′ from an input
(�, ↩→), then ↩→ is valid w.r.t. � , and the new circuit �′ preserves the semantics of � . In addition
(but not yet mechanized in Coq), since topological sorting always succeeds on DAGs, the Rewriter

will not fail when ↩→ is valid.

3 BASIC SETTINGS

This section presents the syntax of a quantum circuit description language and the qubit recycling
problem on it. The instrumented circuits and their semantics are introduced in Sec. 6 when needed.

3.1 Syntax of�antum Circuits

(Circuit) � F nil
| instr ;�

(Instr) instr F alloc[@]

| discard[@]

| * [®@]

instr ## instr′ iff args(instr) ∩ args(instr′) = ∅

� ## �′ iff ∀instr ∈ �, instr′ ∈ �′ . instr ## instr′

args(alloc[@]) = {@}

args(discard[@]) = {@}

args(* [®@]) = {@ ∈ ®@}

Fig. 6. Syntax and disjoint instructions.
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The left half of Fig. 6 shows the syntax of a simple quantum circuit description language.
A (uninstrumented) circuit � is a list of instructions, we use “;” to denote both cons and list
concatenation. An instr can be one of the followings: alloc[@], which allocates a fresh qubit @ in
state |0⟩; discard[@], which measures qubit @ and discards the outcome; or * [®@], which applies
a unitary operator * to a list ®@ of qubits. The qubit identities range from a set Qid. We do not
instantiate a gate set, since it is mostly irrelevant to qubit recycling. For example, the circuit in
Fig. 1a is

alloc[1]; alloc[2]; alloc[3];CX [0, 1];CX [0, 2];CX [0, 3]; discard[1]; discard[2] .

The right half of Fig. 6 defines disjoint instructions. Two instructions instr and instr′ are disjoint,
denoted by instr ## instr′, if their arguments are disjoint, i.e., args(instr) ∩ args(instr′) = ∅. Here
args returns the arguments occurring in an instruction or a circuit. Two circuits � and �′ are
disjoint, denoted by � ## �′, if their instructions are disjoint.

3.2 The�bit Recycling Problem

When considering the qubit recycling problem, we assume every circuit to be simple, that is, a
discarded qubit won’t be initialized later. For general cases where @ is allocated after discard, we
may either rename @ into a fresh qubit after discard, or combine discard[@] and alloc[@] into a
measure-and-reset gate, to obtain a simple circuit.

Definition 3.1 (Simple circuits). A circuit � is simple if and only if for any @ ∈ args(�),

(1) there is at most one alloc[@] in � , and alloc[@] (if it exists) is the first gate on @, and
(2) there is at most one discard[@] in � , and discard[@] (if it exists) is the last gate on @.

Given an input circuit, the qubit recycling problem is to find a topologically identical circuit that
maximizes the number of reusable qubits. We formulate a decision version of this problem to study
its complexity. Below we introduce notions used in formalizing the qubit recycling problem.

Reusable qubit. Given two qubits @ and @′ in a simple circuit � , @′ can reuse @ if and only if
discard[@] occurs before alloc[@′] in � . Formally, @′ can reuse @ in � if there exists = and =′ such
that = < =′, � [=] = discard[@] and � [=′] = alloc[@′]. Here � [=] is the =-th element in C.

Topologically identical circuits. Two simple circuits � and �′ are topologically identical, denoted
by � ∼ �′, if we can obtain �′ from � by swapping adjacent disjoint instructions:

Nil

nil ∼ nil

Skip

� ∼ �′

instr ;� ∼ instr ;�′

Swap

instr ## instr′

instr ; instr′;� ∼ instr′; instr ;�

Trans

� ∼ �′ �′ ∼ �′′

� ∼ �′′

Clearly ∼ is an equivalence relation. As we will see in Sec 6, if � ∼ �′, they are semantically
equivalent, so we can safely transform � into �′ to find more reusable qubits.

Recycling strategy and validity. We call a set of pairs of qubits {(@8 , @
′
8 ) | 8 = 1, . . . :} a recycling

strategy if it defines an injective partial map over qubits, i.e., for any 8 ≠ 9 we have @8 ≠ @ 9 and
@′8 ≠ @′9 . The size of a recycling strategy is the number of pairs in it. We often use the notation ↩→

for the relation defined by a recycling strategy, i.e., @8 ↩→ @′8 if (@8 , @
′
8 ) is in the strategy. A recycling

strategy ↩→ is valid w.r.t. � , if there exists �′ ∼ � such that for any @8 ↩→ @′8 , @
′
8 can reuse @8 . Later

we will see that a given a valid recycling strategy, we can construct �′ in polynomial time.

Definition 3.2 (Qubit recycling problem (decision)). Given a simple circuit � and : ∈ N, decide if
there is a valid recycling strategy w.r.t. � of size : .

The original qubit recycling problem is an optimization problem to find a valid recycling strategy
with the largest size. The decision problem in Def. 3.2 reduces to the optimization problem.
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4 QUBIT DEPENDENCY GRAPHS

A qubit dependency graph (QDG) makes the qubit recycling problem more manageable. It hides
irrelevant details and lets us focus on the computational dependencies that decide whether a qubit
can be reused. Below we formalize QDG, then show that the validity of a recycling strategy for
a circuit can be determined using its corresponding QDG only. To refer to each instruction in �
easily, we implicitly label a instruction by its location in � , such that it is unique in � .

Dependency between instructions. The computation of instr′ depends on instr in circuit� , denoted
by instr ≺� instr′, if � = �1; instr;�2; instr

′;�3 such that (args(instr) ∩ args(instr′)) − args(�2) is
not empty. Equivalently, it means there is an edge from instr to instr′ in the DAG representation of
� . In particular, if alloc[@] ≺� discard[@′], then @ cannot reuse @′ in any �′ such that �′ ∼ � .

Definition 4.1 (Qubit dependency graph). The QDG of a simple circuit � , denoted by QDG(�), is
the digraph (args(�),→), where @ → @′ if and only if

• @ is an input qubit (alloc[@] ∉ �), or @′ is an output qubit (discard[@′] ∉ �), or
• alloc[@] ≺�

∗ discard[@′]. Here ≺�

∗ is the reflexive transitive closure of ≺� .

For example, for circuit� in Fig. 1a, we have 1→ 2 in its QDG, because alloc[1] ≺� CX [0, 1] ≺�

CX [0, 2] ≺� discard[2]; and 0↔ 1 because alloc[0] and discard[0] are not in � .
Notably, QDG is invariant under topological deformation.

Lemma 4.2. Given simple circuits � and �′, if � ∼ �′, then QDG(�) = QDG(�′).

Validity of recycling strategy w.r.t. QDG. A recycling strategy ↩→ is valid w.r.t a digraph (+ ,→),
if ↩→⊆ + ×+ and→↩→ is acyclic. Here E →↩→ E ′ if there is E ′′ such that E → E ′′ and E ′′ ↩→ E ′. If
(+ ,→) is the QDG of a simple circuit � , the validity of ↩→ w.r.t. � coincides with that w.r.t. QDG.

Lemma 4.3 (Adeqacy of QDG). Given a simple circuit � and a recycling strategy ↩→,

↩→ is valid w.r.t � ⇐⇒ ↩→ is valid w.r.t. QDG(�).

Validity w.r.t. QDG is irrelevant to universal vertices. Here a vertex is universal if it is connected
to every vertex in both directions, modeling a qubit that serves as both an input and an output.

Proposition 4.4. Given a digraph � = (+ ,→) and a set + ′ ⊆ + of universal vertices in � . A

recycling strategy is valid w.r.t. � if and only if it is valid w.r.t. the induced subgraph � [+ \+ ′].

5 QUBIT RECYCLING IS NP-HARD

We prove the NP-hardness of the qubit recycling problem by showing the corresponding decision
problem (Def. 3.2) is NP-complete. This proof involves two reductions, with recycling on QDGs
(Definition 5.2) serving as the link between an NPC problem and the qubit recycling problem.

Theorem 5.1. The decision version of the qubit recycling problem is NP-complete.

Proof. The qubit recycling problem is in NP, because detecting cycles in a digraph has linear
time algorithms. To show it is NP-complete, it suffices to prove the following reductions, since
Wilf’s question is NP-complete [Fertin et al. 2015].

Wilf’s question
(Def. 5.6)

≤?
(Lm. 5.7,5.5)

Recycling on QDGs
(Def. 5.2)

≤?
(Lm. 5.3)

Qubit recycling
(Def. 3.2)

□

In the following subsections, we explain the reduction steps from right to left.
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E1 E2

E3
ConstructCirc

=⇒

E1 ◁ • • ▷
E2 ◁ • • ▷

E3 ◁ • • ▷

Ê12
Ê23
Ê31

QDG
=⇒

E1 E2

E3

{ Ê12, Ê23, Ê31 }

Fig. 7. An example digraph and the constructed circuit. Self loops are omi�ed.

5.1 Recycling on QDGs Reduces to�bit Recycling

We first formalize the intermediate problem using QDG. Observe from Def. 4.1 that for each qubit
@ occurs in � , @ → @ in QDG(�), we consider digraph with self loops only.

Definition 5.2 (Recycling problem on QDG). Given a digraph� = (+ ,→) such that ∀E ∈ + . E → E ,
and a natural number : > 0, decide whether there is a valid recycling strategy of size : w.r.t. � .

Algorithm 1 ConstructCirc(+ ,→)

1: � ← nil
2: for 4 ∈ {(E, E ′) | E → E ′ ∧ E ≠ E ′} do

3: � ← CX [E, Ê4 ];�;CX [E
′, Ê4 ]

4: // Ê4 is fresh

5: end for

6: for E ∈ + do

7: � ← alloc[E];�; discard[E]

8: end for

9: return �

To reduce Def. 5.2 to qubit recycling problem, we
construct a circuit based on a digraph (+ ,→) using
Alg. 1. The intuition is that for each edge 4 = (E, E ′),
we introduce a fresh qubit Ê4 and two CX gates, such
that alloc[E] ≺ CX [E, Ê] ≺ CX [E ′, Ê] ≺ discard[E ′],
i.e., E → E ′ is also in the constructed circuit’s QDG.
Since Ê are I/O qubits, they are universal vertices, and
do not introduce new valid recycling strategies.
For example, in Fig. 7, the left-most of is a 3-node

digraph, in the middle is the constructed circuit. The
right-most is the QDG of the circuit, for clarity, we
merge the Ê vertices. A recycling strategy is valid w.r.t. the left-most digraph if and only if it is
valid w.r.t. the right most digraph, since ˆE8 9 are universal vertices.

Lemma 5.3. The recycling problem on QDGs reduces to qubit recycling.

5.2 Wilf’s�estion Reduces to Recycling on QDGs

We rephrase Def. 5.2 using adjacency matrices, and observe that a digraph is acyclic if and only if
its adjacency matrix � can be made strictly upper triangular by permuting its columns and rows
simultaneously. That is, there is a permutation matrix % such that %)�% is strictly upper triangular.

Definition 5.4 (A triangularization problem). Given a square 0, 1-matrix�whose diagonal elements
are all 1s, and a natural number : > 0, decide if there exists permutation matrices % and & such
that %�& =

[
∗ �
∗ ∗

]
for some : × : strictly lower-triangular matrix B.

Lemma 5.5. Recycling problem on QDGs is equivalent to the triangularization problem (Def. 5.4).

The formulation in Def. 5.4 is close enough to Wilf’s question defined below.

Definition 5.6 (Wilf’s question [Wilf 1997]). Given a square 0, 1-matrix�, Wilf’s question, denoted
byWilf(�), asks the existence of permutations % and & such that %�& is upper triangular.

Lemma 5.7. Wilf’s question reduces to the triangularization problem.

Given an instance of Wilf’s question, we can construct a matrix as an instance of problem Def. 5.4
that has the same answer. The construction is by appropriately padding a matrix with 0s and 1s.
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6 CERTIFIED QUBIT RECYCLER

This section presents the verified qubit recycler

Rewriter(↩→, �̃) F (Rename(↩→,−) ◦ Sort(↩→,−))(�̃).

We break down the correctness proof into syntactic and semantic properties, as shown below.

Rewriter(↩→, �̃) = OK(�̃′)
(Lm. 6.4,6.5,6.7)

=⇒ �̃ ↣∗ �̃′
(Lm. 6.3,6.2)

=⇒ �̃ ⊒ �̃′

The philosophy is to break down semantic preservation in a way that minimizes semantic properties
by replacing them with syntactic ones wherever possible. This approach stems from the fact that
syntactic properties are often considerably easier to prove than semantic ones.

Syntactically, we establish that (i) Sort(−, �̃) is a correct validator for the validity of a recycling
strategy; and (ii) when ↩→ is a valid recycling strategy, Sort(↩→,−) and Rename(↩→,−) equates to
a series of atomic circuit rewrites (↣). Semantically, we demonstrate that these rewrites preserve
semantics (⊒), akin to a soundness proof of rewrite rules.

Results presented in this section are formalized in Coq, unless explicitly stated otherwise.

6.1 Instrumented Circuits and Semantic Preservation

6.1.1 Instrumented circuits. To decouple qubit identities from their locations and support dynamic
qubit allocation/discard, we instrument a circuit with lists of I/O qubits, which serve as maps from
qubit to its locations. These I/O qubit lists should be consistent with the instructions in the circuit.

Formally, the instrumented circuits, denoted by � : In { Out1, is inductively defined as follows.

NoDup(In) In ≡? Out

nil : In { Out

NoDup( ®@) ®@ ⊆ In � : In { Out

* [®@];� : In { Out

@ ∈ In � : In { Out

alloc[@];� : In \ {@} { Out

@ ∈ In � : In \ {@} { Out

discard[@];� : In { Out

Here � ≡? � means list � is a permutation of list �.
Intuitively, the I/O list of qubits represents the living qubit at the beginning/end of the circuit, re-

spectively. An empty circuit or a unitary gate does not change living qubits. An alloc[@] instruction
brings a dead qubit @ alive, while discard[@] kills an alive @. Instructions other than alloc[@] must

operate on living qubits. We often denote (� : In { Out) by �̃ when In and Out are irrelevant.

6.1.2 Denotational Semantics. We consider a symmetric monoidal category as the semantic domain.
It serves as a comprehensive library of axioms for the semantic domain, isolating elements that
are directly relevant to our objectives from the intricacies of lower-level representations such as
density matrices and superoperators.

Concretely, we follow [Selinger 2004], where the semantic domain is a category of superoperators.
Since our focus is on the symmetric monoidal structure, we do not assume a concrete category
instance. Below we introduce a specific instantiation, SuperOp, to aid in understanding.

Semantic domain: symmetric monoidal categories. The objects of SuperOp are natural numbers.
Each object = can be interpreted as the number of qubits in a system, or the Hilbert space H2=

where an =-qubit system resides in. Special objects in SuperOp includes I = 0, and qbit = 1. A
morphism from< to = is a superoperator E : H2< →H2= .

Additionaly, SuperOp has a symmetric monoidal structure. The product ⊗ over objects< and =
is defined as< +=. The unit of this product is the object I = 0. Given morphisms E1 ∈ Hom(<1, =1),

1In our Coq development, an instrumented circuit is a triple (�, In,Out) that satisfies a similarly defined property.
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and E2 ∈ Hom(<2, =2), the product ⊗ over morphisms E1 ⊗ E2 ∈ Hom(<1 ⊗<2, =1 ⊗=2) is defined
on a basis elements 41 ⊗ 42 via (E1 ⊗ E2) (41 ⊗ 42) = E1 (41) ⊗ E2 (42), and extends to arbitrary
elements by linearity. Finally, the twist V is defined on basis elements 41 ⊗ 42 via V (41 ⊗ 42) = 42 ⊗ 41.
Using the category SuperOp, the denotation of each individual instruction is shown below,

originally formalized in [Selinger 2004]. A qubit @ is associated with the object qbit: J@ K = qbit; and
a list of = qubits is associated with the tensor product of qbits: J ®@ K = J ®@ [1] K⊗ . . . ⊗ J ®@ [=] K = qbit= .
In particular, an empty list of qubits nil is associated with the tensor unit: JnilK = I.

Jalloc[@] K ∈ Hom(JnilK, J [@] K) : 0 ↦→
[
0 0
0 0

]

Jdiscard[@] K ∈ Hom(J [@] K, JnilK) :
[
0 1
2 3

]
↦→ 0 + 3

J* [®@] K ∈ End(J ®@ K) : � ↦→ *�* †

permutef ∈ Hom(-1 ⊗ -2 ⊗ . . . ⊗ -=, -f (1) ⊗ -f (2) ⊗ . . . ⊗ -f (=) )

Here, we also introduce a family of special morphisms permutef for later defining semantic lifting.
This is the natural permutation map based on the symmetric tensor ⊗.

We further generalize our semantic domain to an arbitrary symmetric monoidal category, since
a symmetrical monoidal structure is sufficient for proving correctness of qubit recycling. We
refer to the book [Etingof et al. 2016] for more details about symmetric monoidal categories. This
generalization is reasonable because, commonly used semantic domains for quantum programs
[Abramsky and Coecke 2004; Heunen and Vicary 2019; Selinger 2004, 2005] share a symmetric
monoidal structure. Notably, by encoding permutations as twists within an SMC, their properties
and interactions with tensor product or other morphisms are succinctly captured by the coherence
identities. This enables us to avoid repeatly dealing with matrix representations of permutations
and cubersome index manipulations in Kronecker products. The remainder contents of this section
depends only on the properties of a symmetric monoidal category, without referring to the concrete
instantiation SuperOp.

In detail, we parameterize over an arbitrary symmetric monoidal category SMC as the semantic
domain, and assume a special object qbit ∈ SMC. In defining denotations for alloc and discard, we
assume morphisms alloc ∈ Hom(I, qbit) and discard ∈ Hom(qbit, I). For unitary operations, we
assume a partial map unitary(* ,=) : End(qbit=) ∪ {⊥}, where an endomorphism is defined only if
* can be applied over = qubits. The permutef morphism generalizes to any morphism in SMC that
implements the permutation f , constructed using associator U-,.,/ : (- ⊗ . ) ⊗ / � - ⊗ (. ⊗ / ),
left and right unitors _- : I ⊗ - � - and d- : - ⊗ I � - , or twist V-,. : - ⊗ . � . ⊗ - . By the
coherence theorem of symmetric monoidal categories, these morphisms are identical, thus the
generalized permutef is well defined.

Semantic lifting. On top of an SMC and the parameterized objects and morphisms, we define
the denotation of an instrumented circuit (� : In { Out) by lifting the morphisms of individual
instructions to a morphism between the I/O qubits, using permutation and left/right unitors. This
is to permute the input qubits In to make the arguments of an instruction adjacent and aligned in
order, such that the morphisms of the corresponding instruction is applicable. After applying the
morphism, we again permutes the living qubits such that they are in the order defined by Out.
The denotational semantics lifted w.r.t. I/O is formalized in Fig. 8. We omit the associators for

clarity, since they are irrelevant by the coherence theorem of a monoidal category. A denotation
is defined only if the intermediate terms are all defined. The permutations involved are uniquely
determined, and the choice of the intermediate qubit lists Mid does not affect the results. Thus
Fig. 8 indeed defines a partial function over the instrumented circuits.
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Jnil : In { OutK = permutef where Out = f (In)

Jalloc[@] : In { OutK = permutef ◦ alloc ⊗ id ◦ _−1 where Out = f (@; In)

Jdiscard[@] : In { OutK = _ ◦ discard ⊗ id ◦ permutef where @;Out = f (In)

J* [®@] : In { OutK = permuteg ◦ unitary(* , | ®@ |) ⊗ id ◦ permutef
where f (In) = ( ®@;Mid) = g−1 (Out) for some Mid

J�1;�2 : In { OutK = J�2 : Mid { OutK ◦ J�1 : In { MidK for some Mid

Fig. 8. Li�ed semantics

Graphical representations for the lifted denotation of alloc, discard and* are depicted in Fig. 9.
An arrow represents an object (or the identity morphism) in SMC, which is labeled next to the line.
The object I is specially represented by a dashed arrow. Arrows placed in juxtaposition means a
tensor product of objects. A morphism is represented by a box or triangle, whose domain is the
line coming from the bottom, and the codomain is the line outgoing to the top.

J InK

_−1

J InK

I

alloc

J@ K

f

JOutK

(a) Jalloc[@] : In { OutK

J InK

f

JOutK

J@ K
discard

I

_

JOutK

(b) Jdiscard[@] : In { OutK

J InK

f

J In \ ®@ K

J ®@ K

unitary(* , | ®@ | )

J ®@ K

g

JOutK

(c) J* [®@] : In { OutK

Fig. 9. Graphical repr. of the li�ing. Here _ is the le� unitor, f and g are permutation morphisms.

6.1.3 Semantic Preservation. On top of the denotational semantics, semantic preservation is natu-
rally defined as equivalence over the denotations modulo renaming and permutation.

Definition 6.1 (Semantic preservation). For any instrumented circuits� : In { Out and�′ : In′ {

Out′, the latter preserves the semantics of the former, denoted as �̃ ⊒ �̃′, if there exists bijections

5 , 6, and permutations f , g , such that

(1) (I/O equivalence up to renaming and permutation) In′ = f ◦ 5 (In) and g (Out′) = 6(Out); and

(2) (Safety preservation) if J�̃ K is defined, then J�̃′ K is defined; and

(3) (Semantics equivalence modulo permutation) J�̃ K = permuteg ◦ J�̃′ K ◦ permutef .

We prove that this semantic preservation is compositional.

Lemma 6.2 (Compositionality). The relation ⊒ is transitive, and is congruent to sequential

composition. The latter is, for any �̃1, �̃
′
1
, �̃2, �̃

′
2
, we have �̃1 ⊒ �̃′

1
∧ �̃2 ⊒ �̃′

2
=⇒ �̃1; �̃2 ⊒ �̃′

1
; �̃′

2
.

Here �̃ ; �̃′ is defined only if there is a Mid such that �̃ = (� : In { Mid) and �̃′ = (�′ : Mid { Out).
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6.2 Rewriting rules

We introduce two rewriting rules over instrumented circuits, and use relation �̃ ↣ �̃′ to denote �̃′

is obtained from �̃ via a rewriting step.

TopoDeform

In ≡? In′ � ∼ �′ Out ≡? Out′

(� : In { Out)↣ (�′ : In′ { Out′)

Reuse

@′ ∉ (�1 : In { Mid) @ ∉ (�2 : Mid { Out)

(�1;�2 : In { Out)↣ (�1;�2 : In { Out) [@/@′]

Here @ ∉ (� : In { Out) indicates that qubit @ is not present in the sets In and Out, nor is it
used as an argument in any instructions within � . This signifies that @ is entirely irrelevant in the
instrumented circuit, and its lifetime does not overlap with the execution of � . The notation [@/@′]
denotes the substitution of each occurrence of @′ with @.
The first rule involves topological deformation, and permits permutation on I/O qubits, while

the second rule allows for the reuse of qubit @ as @′, given that the lifetime of @ precedes that of @′.
We prove that these rewriting rules are sound. The proof relies on properties such as the

interchange law and coherence theorem of a symmetric monoidal category.

Lemma 6.3 (Soundness of rewriting rules). If �̃ ↣ �̃′, then �̃ ⊒ �̃′.

In the following subsections, we show that the overall behavior of our recycler is equivalent to a
series of circuit rewritings using these two rules.

6.3 Sorting and Validity Checking

The Sort function takes a recycling strategy ↩→ and a circuit � as inputs. It tries to do topological
deformation over � such that the reordered circuit �′ is compatible with ↩→. That is, for each
@ ↩→ @′, @′ can reuse @ in �′.

Algorithm 2 Sort(↩→, �̃)

1: if ↩→ is a recycling strategy for � then

2: � ← DAG of �

3: � ′ ← � with edges defined by ↩→

4: if TopoSort(� ′) = OK(�′) then
5: return OK(�′ : In { Out)

6: end if

7: end if

8: return Invalid recycling strategy

The algorithm Sort is outlined in Alg. 2. In line 1,
the algorithm first checks two conditions for the in-
put ↩→: (i) ↩→ is an injective function, and (ii) for each
@ ↩→ @′, both discard[@] and alloc[@] are present in� . If
both conditions are met, the circuit is translated into a
DAG representation, denoted as � (line 2). Next, edges
(discard[@], alloc[@′]) are added to � for each @ ↩→ @′,
resulting in � ′ (line 3). The algorithm then performs
a topological sorting using Kahn’s algorithm (line 4).
Kahn’s algorithm guarantees that the circuit is reordered
without violating computational dependencies, ensuring that discard[@] occurs before alloc[@′]
for each @ ↩→ @′. If the topological sorting succeeds, the algorithm returns the reordered circuit
(line 5); otherwise, it detects a cycle in � ′ that invalidates ↩→.

We prove that Sort has the desired properties.

Lemma 6.4 (Sort returns a topological deformation of � .). Given � : In { Out and ↩→, if

Sort(↩→, (� : In { Out)) = OK(�′ : In { Out), then �′ ∼ � . By definition, �̃ ↣ �̃′.

Lemma 6.5 (Sort is a correct validator). Given �̃ and ↩→, if Sort(↩→, �̃) = OK(�̃′) for some

�′, then for any @ ↩→ @′, @′ can reuse @ in �′.

The inverse of the previous lemma also holds, which says Sort is a “complete” validator.

Lemma 6.6 (Sort succeeds when recycling strategy is valid). Given �̃ and ↩→, then ↩→ is

valid w.r.t. � if and only if Sort(↩→, �̃) succeeds.

The proof of Lm. 6.6 is straightforward, but not yet mechanized in Coq.
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Algorithm 3 Solver(5 , �, f)

1: if not ℎ0;C (f) then

2: A ← 5 (�, f)

3: f
A
−→� f′

4: Solver(5 , �, f′)

5: else return Extract(f)
6: end if

Algorithm 4 Extract(f)

1: A; ← f.rows

2: : ← |A; |

3: 2; ← f.cols_del ++f.cols

4: return {(2; [= − : + 8], A; [8]) | 8 = 0, 1, ..., : − 1}

5:

6:

6.4 Reusing by Renaming

The Rename(↩→, �̃) function operates by iteratively popping @ ↩→ @′ from ↩→, and continue to the

next iteration with Rename(↩→ [@/@′], �̃ [@/@′]), until ↩→ is empty and returns �̃ . Notably, Rename
is a total function, it preserves semantics only if the inputs are appropriate. The following lemma
establishes that when the recycling strategy ↩→ is valid, the Rename function is equivalent to a

series of atomic rewrites (using the Reuse rule) over the instrumented circuit �̃ .

Lemma 6.7 (Rename is eqivalent to a series rewrites). For any ↩→ and �̃ , if @′ can reuse @ in

� for any @ ↩→ @′, then �̃ ↣∗ Rename(↩→, �̃).

6.5 Final Theorem and Coq Development

Putting the previous results together, we obtain the final theorem for our certified qubit recycler.

Theorem 6.8. For any recycling strategy ↩→ and instrumented circuits �̃ and �̃′,

Rewriter(↩→, �̃) = OK(�̃′) =⇒ �̃ ⊒ �̃′ .

We implemented Rewriter and mechanized Thm. 6.8 in the Coq proof assistant, with ∼6k lines
of Coq code. The mechanization is built on top of an axiom-free formalization of category theory
in Coq [Wiegley 2022]. Notable byproducts of this Coq formalization include the implementation
and verification of Kahn’s algorithm for topological sorting, and version of the coherence theorem
for symmetric monoidal categories.
We extracted Rewriter to OCaml such that it can work together with the Solver in Sec. 7.

7 SOLVER FOR FINDING RECYCLING STRATEGIES

This section presents our algorithm for finding recycling strategies, and an empirical evaluation on
the RevLib [Wille et al. 2008] benchmark.

7.1 The Algorithm

Our algorithm is outlined inAlg. 3. The Solver is inspired by Lm. 5.5, that finding recycling strategies
on QDGs is equivalent to a triangularization problem. The Solver is essentially a polynomial time
algorithm for the triangularization problem given a row permutation % . It implements the procedure
demonstrated in Fig. 3: given a heuristic function 5 (which essentially computes a permutation
% one row at a time), an = × = matrix � representing a QDG, and a current state f , it iteratively
choose a row A using 5 , take a step to state f ′, and continue the procedure.

A state f is a tuple (rows, cols, cols_del, k). Here rows is a list of row indices already chosen,
cols is the list of remaining columns, cols_del is the list of deleted columns, and k is an upper-
bound of the number of further steps.
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The initial state is f0 = ( [], [0, ..., = − 1], [], =), and ℎ0;C (f) if f.k ≤ 0. The stepping rule is:

A ∉ rows cols′ = cols\{ 9 | �A 9 = 1} cols_del′ = cols_del ++ (cols\cols′)

rows′ = (cols′ = [] ? rows : (rows ++[A ])) k′ = min(k, |cols′ |) − 1

(rows, cols, cols_del, k)
A
→� (rows

′, cols’, cols_del′, k′)

In each step, given a next row A , it deletes those columns 9 such that �A 9 = 1, and updates the
list for remaining columns (col) and deleted columns (col_del). It then appends A to rows if the
remaining columns col’ is not empty. Finally, it updates k to the minimum of k − 1 and |cols′ | − 1.

When reaching a halting state fℎ , the solver extracts the solution from fℎ , as described in Alg. 4.
The size of the extracted recycling strategy is the number of overall steps.

Below we illustrate an execution of this algorithm using the QDG presented in Sec. 2.2 as an
example. We assume the heuristic 5 chooses rows (3, 2, 1, 0) in order.

0 1 2 3

0 1 1 1 1

1 1 1 0 1

2 1 0 1 1

3 1 0 0 1

A row col col_del k

f0 3 [] [0, 1, 2, 3] [] 4

f1 2 [3] [1, 2] [0, 3] 1

f2 − [3, 2] [1] [0, 3, 2] −1

The algorithm halts after 2 steps. Extracting the result from f2 yields {(2, 3), (1, 2)}, a solution of
size 2 and coincides with our previous solution.
We also adapted the “dual-circuit” technique [DeCross et al. 2023], which appears to be more

intuitive in our settings. Recall that a valid recycling strategy w.r.t. a QDG � is essentially a partial
permutation matrix ' such that �' is nilpotent, it is straightforward to show that ') is a valid
recycling strategy w.r.t. �) . We apply the solver to both � and �) , and return the larger solution.

7.1.1 Designs of the Heuristics. It remains to find an appropriate heuristic 5 such that the number
of overall steps is maximized. We design heuristics based on the following observations:

(1) (Greedy) The bound k in the state strictly decreases as the algorithm proceeds, and the
algorithm halts if k ≤ 0. Therefore, we may choose the next row that maximizes the bound k
in the next step, such that the algorithm is likely to step more.

(2) (Max0s) The more 0s there are in the submatrix �[rows′] [cols′], it is more likely for the
algorithm to continue stepping. Therefore, we may choose the next row that maximizes the
number of 0s in �[rows′] [cols′].

(3) (LA) In experiments, it is common that several rows perform equally. In these cases, we may
break a tie by taking a further step (look-ahead).

Later in this section, we evaluate these heuristics, which yield optimal results most of the time.

7.2 An ILP Model and Upper-Bound Estimator for�bit Recycling

To tell whether our heuristics obtain an optimal solution, we try to find an optimal solution
by translating qubit recycling problem into an ILP model, and solve the model using the SCIP
solver [Bolusani et al. 2024], a framework for Constraint Integer Programming. When the problem
size is too large for SCIP to find optimal solutions in reasonable time, we estimate an upper-bound
for the size of an optimal solution.

7.2.1 ILP Model. Recall that given a QDG in form of a = × = 0-1 matrix �, to find a maximal
valid recycling strategy is to find a partial permutation matrix ' (representing an injective partial
map) such that �' is nilpotent, and the rank of ' is maximized. This description can be roughly
transformed into an ILP problem in Fig. 10. Here ' consists of =×= 0-1 variables, and the constraints
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1) · ' ≤ 1 and ' · 1 ≤ 1 is to guarantee that ' is a partial permutation. The main difficulty is to
translate “nilpotent” into a linear constraint.

maximize 1) · ' · 1
subject to �' nilpotent

1) · ' ≤ 1

' · 1 ≤ 1

Fig. 10. The ILP model.

We achieve this using the fact [Bang-Jensen and Gutin 2008] that:
every acyclic graph has an acyclic ordering. That is, an ordering
?1, ..., ?= such that for every ?8 → ? 9 , we have 8 < 9 . Since the nilpo-
tent constraint is equivalent to requiring the digraph represented by
�' is nilpotent, we introduce another = integer variables ?8 represent-
ing the 8-th qubit in an acyclic ordering, and the nilpotent constraint
becomes: ∀8, 9 . (�')8, 9 = 1 =⇒ ?8 < ? 9 , and additional constraints
∀8 . 1 ≤ ?8 ≤ = and ∀8 ≠ 9 . ?8 ≠ ? 9 . These constraints can be easily
translated into $ (=2) linear constraints at a cost of additional $ (=2) variables.
Our model is more compact ($ (=2) variables and constraints) compared with that of [DeCross

et al. 2023] ($ (=2) variables and $ (=4) constraints), thus is potentially easier to solve.

7.2.2 Upper-Bound Estimator. If we are to have a size : solution for a QDG �, by Lm. 5.5, there
must be a strictly upper-triangular submatrix � of order : . Therefore, there must be a row 8: with
more than : 0s, and a column 9: with more than : 0s. Among the rest of rows and columns, there
must be a row 8:−1 with more than : − 1 0s, etc. Based on this idea, we have an upper-bound
estimation for the size of the optimal solution. We count the number of 0s of each rows, and sort
the counts in descending order obtaining A1, A2, ..., A= . We do the same for the columns, and obtain

21, 22, ..., 2= . The upper bound is :̂ = min8=1,2,...,= (min(A8 , 28 ) + 2(8 − 1)).

7.3 Experimental Evaluation

This subsection presents experimental evaluation of the performance of Alg. 3 with 5 heuristics
(namely, Greedy, Max0s, their look-ahead version Greedy+LA and Max0s+LA, and Greedy+Max0s

that returns the better results from Greedy and Max0s), along with comparisons with recent related
works. The following outlines the specific settings.

Metrics. We evaluated each method using metrics including the number of recycled qubits, result
optimality and solving time, and the increase in circuit depth after recycling.

Dataset. We conducted evaluations using the 84 circuits from the RevLib [Wille et al. 2008]
benchmark reported in [Paler et al. 2016]. Additionally, to facilitate comparisons with related works,
we introduced a modified version of the dataset. In these modified circuits, each qubit is allocated
before use and discarded at the end, effectively eliminating I/O qubits.

Comparative studies. We compare our algorithm with [Paler et al. 2016] and two recent related
works [DeCross et al. 2023; Hua et al. 2023]. However, the latter two works do not explicitly
support circuits with I/O qubits. In order to facilitate a fair comparison with them, on one hand, we
additionally evaluate our algorithm on modified RevLib circuits, as described above; on the other
hand, we implement the a version of the algorithm in [DeCross et al. 2023] that support I/O qubits.

Experimental setup. The experiments were conducted on a PC equipped with an AMD Ryzen 9
5950X CPU and 64GB of RAM, running Debian version 5.10.127-1.

7.3.1 Evaluation Results on RevLib. Selected results of the evaluation on the RevLib benchmark
are shown in Fig. 11. Overall, all the methods achieves optimal on the majority of RevLib circuits;
Greedy+Max0s achieves the highest number of best results.

Optimality. For 76 out of the 84 circuits, all of our methods, including our implementation of
[DeCross et al. 2023]’s algorithm, achieved optimal results. In contrast, [Paler et al. 2016] achieved
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#Recycled qubits (the more the better)

Circuit W P D G GL M ML GM

pdc_307 619 464 505 505 505 508 508 508

spla_315 489 401 407 407 407 407 407 407

hwb9_304 170 81 121 121 119 119 119 121

ex5p_296 206 107 127 127 127 125 125 127

e64-bdd_295 195 114 126 126 126 126 126 126

hwb8_303 112 52 73 73 73 73 73 73

hwb7_302 73 31 45 45 45 44 44 45

hwb6_301 46 20 22 22 23 22 22 22

(a) For each circuit, we list its width in column “W”, and the num-
ber of recycled qubits using various methods in sub-columns of
“# Recycled qubits”. Each sub-column corresponds to a method as
follows: “P”: those reported in [Paler et al. 2016]; “D”: our imple-
mentation of [DeCross et al. 2023]’s algorithm; “G”: Greedy; “M”:
Max0s; “GL”: Greedy+LA; “ML”: Max0s+LA; “GM”: Greedy+Max0s.
The best results among the methods are highlighted.
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Fig. 11. Selected results of the evaluation on the RevLib benchmark.

optimal results in only 59 of these circuits, and erroneously surpassed the optimal solution in 2
circuits. However, for the remaining 8 circuits, we could not determine if an optimal solution was
obtained due to SCIP not terminating within 24 hours, and our estimated upper bounds did not
match our solutions. The results for these 8 circuits are listed in Table 11a. For any pair of these
methods, there exists a circuit where one method outperforms the other, except for [DeCross et al.
2023] and Greedy, which perform equally, and Max0s and Max0s+LA, which also perform equally.
Furthermore, Greedy+Max0s achieves the highest number of optimal solutions, and performs
equivalently or superiorly to [DeCross et al. 2023] and [Paler et al. 2016] in every example.

Time consumption. Fig. 11b shows the average time consumption (in logarithmic scale) of each
method for RevLib circuits of different widths. The time consumption of [DeCross et al. 2023]
and of Greedy are nearly the same and are the lowest among the methods. The LA methods
incurs a significant overhead in time. Compared to [DeCross et al. 2023], the time consumption of
Greedy+Max0s is approximately 1.5-3 times greater.

Increase in depth. Fig. 11c displays boxplots of the ratio between depth before and after recycling
using each method. The performance of each method is comparable, with depth increase ranging
from 144% to 176% on average. The ratios for methods Max0s, Max0s+LA and Greedy+Max0s have
relatively consistent distribution.

7.3.2 Evaluation Results onModified RevLib. Fig. 12 illustrates the evaluation results on themodified
RevLib circuits, where we additionally assess CaQR[Hua et al. 2023]. We excluded 8 circuits where
CaQR failed to terminate within 6 hours. The performance of all methods, except CaQR, closely
mirrors the results from the unmodified RevLib circuits. Despite yielding a similar increase in
circuit depth, CaQR exhibits significantly higher time consumption and noticeably lower qubit

saving rates (
#Recycled qubits
Circuit width ). The outliers in Fig. 12c, where CaQR demonstrates lower depth ratios,

correspond to circuits where CaQR recycled considerably fewer qubits compared to other methods.
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Fig. 12. Results of the evaluation on the modified RevLib benchmark.

8 RELATED WORK

Width optimization for quantum circuits. Wire-recycling [Paler et al. 2016], CaQR [Hua et al.
2023], and two other recent works [DeCross et al. 2023; Sadeghi et al. 2022] investigate circuit
width optimization in settings similar to ours, where opportunities for qubit reuse are created solely
through topological deformations. Each algorithm in these works operates by reusing one qubit at
a time and employs fundamentally similar criteria for 1-qubit reuse. Notably, [Sadeghi et al. 2022]
and [DeCross et al. 2023], along with our Greedy heuristic, appear functionally similar, except that
[Sadeghi et al. 2022] does not utilize the “dual-circuit” technique.

Among these works, [Sadeghi et al. 2022] and [DeCross et al. 2023] explicitly operate on a more
compact causal cone abstraction (referred to as dependency lists in [Sadeghi et al. 2022]) rather
than DAG representation. Our QDG effectively generalizes the causal cone by uniformly treating
I/O qubits as special dependencies. Built on top of QDG, our triangularization formalization of the
qubit recycling problem further provides criteria for valid recycling strategies, and enhances the
intuitiveness of algorithm design, such as the Greedy heuristic and the “dual-circuit” technique.
Our approach also naturally led to the design of Max0s, which outperforms [DeCross et al. 2023]
on certain circuits.

CaQR [Hua et al. 2023] and [Sadeghi et al. 2022] additionally target SWAP reduction and improved
fidelity or PST, which are critical aspects for NISQ applications. While these aspects are beyond
the scope of this work, extending QDG with additional costs for each recycling strategy could
potentially facilitate SWAP-aware qubit reuse. Furthermore, CaQR handles circuits where all gates
commute, such as QAOA circuits, by reducing the problem to graph coloring. It is unclear to us
how to generalize QDG to leverage non-trivial gate commutativity.
In addition to these works, REVS [Parent et al. 2015] and SQUARE [Ding et al. 2020] leverage

uncomputation to create qubit-reuse opportunities, which also falls beyond the scope of our work.

Related problems in classical compiler optimizations. Two closely related problems in classical
compiler optimizations are minimum register instruction sequencing (MRIS) [Govindarajan et al.
2003], and register saturation (RS) [Touati 2005]. MRIS appears fundamentally the same as qubit
recycling. It asks to find a scheduling of instructions that requires minimum registers. However,
the complexity of MRIS is not known. Opposite to qubit recycling, RS is an NP-hard problem that
asks for the upper bound of needed registers in all possible scheduling. Another closely related
problem is optimal code generation for DAGs, which is known to be NP-complete [Bruno and Sethi
1976]. Its objective is to minimize code length instead of the number of registers.
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Related problem in the language of monoidal categories. In the context of monoidal categories, a
closely related problem is computing the monoidal width [Lavore and Sobociński 2023]. Monoidal
width quantifies the complexity of decomposing morphisms within monoidal categories, encom-
passing structural width measures for graphs like tree width and rank width. While monoidal width
penalizes the composition operation along “large” objects and encourages the use of monoidal
products, the qubit recycling problem seeks to minimize circuit width by penalizing the usage of
monoidal products. For instance, the monoidal width of 5 ⊗ 6 is determined by max(F (5 ),F (6))
using a weight function F , whereas a proper definition for circuit width should be in a form of
F (5 ) +F (6). Exploring the generalization of the qubit recycling problem to other settings presents
an intriguing avenue for further investigation.

Compiler verification for quantum programs. There are numerous works on compiler verification
and formulation of compiler correctness for various scenarios [Patterson and Ahmed 2019]. Few
work targets the quantum settings. Amy et. al. [Amy et al. 2017] verified a compiler from Boolean
expressions to reversible circuits in F*, with an aim to reduce circuit width. However, their verifica-
tion uses a classical semantic model, where a state is of type N→ B. ReQWIRE [Rand et al. 2018],
presents methods for verifying that ancillae are discarded in the desired state, and implements a
verified compiler from classical functions to quantum oracles. Their semantics is parameterized
with a context that maps variables to wire indices, serving a similar purpose as our In, Out lists.
However, there is no notion for semantic preservation between quantum circuits in ReQWIRE,
and it is not clear to us how their approach facilitates qubit recycling. VOQC [Hietala et al. 2021]
and Giallar [Tao et al. 2022] aim to verify practical quantum circuit optimizers [Aleksandrowicz
et al. 2019; Nam et al. 2018]. VOQC follows a CompCert-like approach that verifies each single
optimization pass manually using sophisticated tactics; while Giallar seeks an almost automatic
solution. As discussed previously, the verification techniques in these two works are not directly
applicable to qubit recycling, where renaming and dynamic qubit allocation/discard are involved.

9 CONCLUSION AND FUTURE WORK

Qubit recycling involves finding a topologically identical quantum circuit that maximizes qubit reuse.
By translating the problem to a matrix triangularization problem based on qubit dependency graphs,
we demonstrated the NP-hardness of this problem. Additionally, we have developed a certified qubit
recycler in Coq, This qubit recycler integrates validation and verification approaches. Byproducts
of the certification include a verified implementation of Kahn’s topological sort algorithm, and a
mechanized proof of a version of the coherence theorem of symmetric monoidal categories. Our
qubit recycler reaches optimal solutions for the majority circuits in the RevLib benchmark.
While our focus has been on topologically identical quantum circuits, where qubit reuse op-

portunities arise from disjoint instruction swaps, it is possible to further enhance qubit reuse
when a broader class of semantically equivalent quantum circuits is introduced. Potential future
directions include extending the QDG-based approach by making use of a semantic domain with
richer structures e.g., the ZX-calculus [Coecke and Kissinger 2017] and Quon [Liu et al. 2017], and
fostering qubit reuse opportunities using additional circuit transformations guided by QDGs.
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