
On Incorrectness Logic forQuantum Programs

PENG YAN, University of Technology Sydney, Australia

HANRU JIANG∗, Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, China

NENGKUN YU†, University of Technology Sydney, Australia

Bug-catching is important for developing quantum programs. Motivated by the incorrectness logic for classical

programs, we propose an incorrectness logic towards a logical foundation for static bug-catching in quantum

programming. The validity of formulas in this logic is dual to that of quantum Hoare logics. We justify the

formulation of validity by an intuitive explanation from a reachability point of view and a comparison against

several alternative formulations. Compared with existing works focusing on dynamic analysis, our logic

provides sound and complete arguments. We further demonstrate the usefulness of the logic by reasoning

several examples, including Grover’s search, quantum teleportation, and a repeat-until-success program. We

also automate the reasoning procedure by a prototyped static analyzer built on top of the logic rules.

CCS Concepts: • Theory of computation → Programming logic; • Computer systems organization →
Quantum computing.

Additional Key Words and Phrases: Incorrectness Logic, Quantum Programming Languages, Projective

Quantum Predicates

1 INTRODUCTION
Quantum computing hardware has made significant progress in the past decade [Arute et al. 2019;

Zhong et al. 2020]. Great efforts have been devoted to developing programming languages and

software to make it realistic to solve real-world problems using quantum computers. However,

difficulty in writing correct quantum programs hinders practical quantum computing. Due to the

counter-intuitive nature of quantum mechanics, small quantum programs written and reviewed

by professional quantum computing experts are sometimes erroneous. For example, bugs arose

in example programs of IBM’s OpenQASM project [Cross et al. 2021], Qiskit [Aleksandrowicz

et al. 2019], and Rigetti’s PyQuil project [Smith et al. 2016] in their official GitHub repositories.

Huang and Martonosi [Huang and Martonosi 2019a,b] proposed a taxonomy for bugs based on

their debugging experience with Scaffold [Abhari et al. 2012; JavadiAbhari et al. 2015]. Theories

and techniques for debugging are in urgent demand.

There are two lines of approaches aiming at debugging quantum programs. One approach is

dynamic assertions [Li et al. 2020; Liu et al. 2020], which detect erroneous states via quantum

measurements at the cost of additional qubits and quantum operations at run-time. The other is

statistical assertions [Huang and Martonosi 2019a,b] that detect errors via statistical tests over

sampled simulations. Unfortunately, both approaches suffer from two main limitations:

(1) Limited support for bug-finding ahead of run-time. It is desirable to debug a quantum program

before submitting it to a quantum device, which might be busy and make the program

have to wait in the queue before being executed. The dynamic assertions are designed for

run-time debugging instead. Statistical assertions achieve static debugging via repeated

simulated measurements, which is inefficient, as argued in [Li et al. 2020].

∗
The first two authors contributed equally.

†
Corresponding author

Authors’ addresses: Peng Yan, Centre for Quantum Software and Information, University of Technology Sydney, Sydney,

Australia, pengyan.edu@gmail.com; Hanru Jiang, Yanqi Lake Beijing Institute of Mathematical Sciences and Applications,

Beijing, China, hanru@bimsa.cn; Nengkun Yu, Centre for Quantum Software and Information, University of Technology

Sydney, Sydney, Australia, nengkunyu@gmail.com.

HTTPS://ORCID.ORG/0000-0003-2930-7447
HTTPS://ORCID.ORG/0000-0002-5965-1209
HTTPS://ORCID.ORG/0000-0003-1188-3032
https://orcid.org/0000-0003-2930-7447
https://orcid.org/0000-0002-5965-1209
https://orcid.org/0000-0003-1188-3032

2 Peng Yan, Hanru Jiang, and Nengkun Yu

(2) Lack of soundness or completeness arguments. Though these approaches should alarm only

true bugs, none of them makes formal arguments about their soundness. Even without

complicated control structures like while-loops, none of them guarantees completeness (do

not miss bug): both dynamic assertions and statistical assertions capture a bug by chance

due to the probabilistic nature of quantum measurement.

To address these limitations, program logics like quantum Hoare logic [Ying 2012] and applied

quantum Hoare logic (aQHL) [Zhou et al. 2019] seem to be a good choice, since they facilitate

static reasoning and provide soundness and completeness guarantees. However, these logics are

not suitable for debugging purposes. They are not known to be decidable, and their proof rules do

not prove the existence of a bug: propositions of the form ¬({𝑃}𝑆{𝑄}). Negating the postcondition
will not help much, because in general,

¬({𝑃}𝑆{𝑄}) ⇏ {𝑃}𝑆{¬𝑄},
which means true bugs could be missed.

Onework that addressed the above issues in the classical world is the incorrectness logic [O’Hearn

2019] (IL), an under-approximate analogy of Hoare logic for reasoning about bugs. Specifications

in IL are of the form

[presumption]code[result] .
It says that the post-assertion result is an under-approximation (subset) of the final states obtained

by executing the code from states in presumption. It can be equivalently interpreted as: every

state in result is reachable from some state in presumption. When result specifies the erroneous

states, such an interpretation matches the principle of debugging tools to avoid false positives

(bug suggestions that are not true). Guided by such a principle, static debugging tools [Blackshear

et al. 2018; Distefano et al. 2019; Gorogiannis et al. 2019] were developed and proved practical,

making it easier for programmers to locate and fix the bugs. This novel idea was also advanced to

Incorrectness Separation Logic [Raad et al. 2020], which derived a begin-anywhere, intra-procedural

symbolic execution analysis with no false positives.

A similar theory for quantum programming would benefit quantum software development and

guide the design and implementation of debugging tools. However, it is unclear how to generalize

IL to the quantum settings, where the state model and the predicates are fundamentally different.

In particular, it is not clear how to use quantum predicates to characterize errors and what it means

by achieving (reaching everything described by) a quantum predicate.

In this paper, we extend the idea of IL by using projection-based quantum predicates from the

quantum logic [Birkhoff and Neumann 1936], which has been successfully applied to reasoning

about the correctness [Zhou et al. 2019] of quantum programs and designing dynamic assertions

[Li et al. 2020]. The main result is a sound and complete logic system for reasoning about bugs in

quantum programs
1
statically. Technical contributions include:

• A novel interpretation of projection-based quantum predicates in the context of bug-

catching. The key ingredient is an under-approximation relation, which is the inverted

satisfaction relation for projections. We explain why the satisfaction of projections is not

suitable for characterizing erroneous quantum states and why our under-approximation

relation can capture errors without introducing false positives.

• An incorrectness triple based on the under-approximation relation to incorporate the spirit

of reachability analysis proposed by O’Hearn [O’Hearn 2019]. The triple turns out to be

1
We consider only quantum programs with classical control, and bugs at the software level. We expect software level

bug-catching to be important for both near-term and error-corrected quantum computing, because we are not aware of any

quantum algorithm robust to logical bugs (instead of noise that arises in hardware).

On Incorrectness Logic for Quantum Programs 3

an under-approximate dual of the aQHL triple. To better understand and justify our triple,

we compare it with several possible alternatives in Sec 8 and find our triple the best in

expressiveness and efficiency.

• A sound and complete quantum incorrectness logic (QIL) based on the incorrectness triple.

The resulting proof rules in our logic have a similar structure to their classical counterparts.

We further prove that bounded loop-unrolling is sufficient to guarantee completeness when

the quantum system is finite-dimensional, ensuring that a complete inference is decidable

even if the state space is uncountably infinite. This result also shows that aQHL is decidable.

• Three examples for demonstrating the incorrectness reasoning by QIL, namely Grover’s

algorithm, quantum teleportation, and a repeat-until-success program. In these examples,

we introduce and reason about two types of bugs mentioned in Huang et al. [Huang and

Martonosi 2019b]. We also developed a prototyped static analyzer built on top of our proof

rules to automate the reasoning.

Organization of the paper. Sec. 2 gives the minimal background of quantum computation. Sec. 3

explains the main challenges and develops our key ideas. The language used in this paper is given in

Sec. 4. In Sec. 5, we introduce the under-approximation relation, a quantum version of incorrectness

triple, and the duality between quantum correctness and incorrectness triples. In Sec. 6, a sound and

complete proof system for QIL triples is presented. In Sec. 7, we give three examples for reasoning

about the existence of bugs with our proof system. In Sec. 8, we discuss the reasons for our choice

by comparing our triple with other alternatives. The related works and conclusion are given in

Section 9 and Section 10 respectively. We leave detailed proofs in TR.[Yan et al. 2022]

2 PRELIMINARY
This section presents aminimal background of quantum computation and projection-based quantum

predicates to make the paper self-contained. We will walk through the basics of quantum computing

with a small program over a 2-qubit system, as shown in Fig. 1a with the corresponding state

transitions illustrated in Fig. 1b. The program prepares a Bell state then measures the two qubits,

and the two measurement outcomes from the two qubits are expected to be the same.

// assume span{|00⟩}
𝐻 (𝑞0); CNOT(𝑞0, 𝑞1);
if (𝑀 [𝑞0] = true → skip

□ false → skip) fi;

if (𝑀 [𝑞1] = true → skip
□ false → skip) fi;

// ensures span{|00⟩ , |11⟩}

(a) the program, where𝑀 = {|0⟩⟨0| , |1⟩⟨1|}

|00⟩

(|00⟩ + |11⟩)/
√

2

|11⟩ |00⟩

|11⟩ – – |00⟩

1

0.5 0.5

1 0 0 1

𝐻, CNOT

𝑀 [𝑞0]

𝑀 [𝑞1]

(b) the transitions of quantum states, labels on arrows
are (conditional) probabilities of the transition

Fig. 1. A small example that prepares and measures a Bell state.

2.1 Quantum States
We consider a quantum system of the form 𝑞 consisting of 𝑛 qubits (quantum bits). The state space

of the system is the 2
𝑛
-dimensional complex vector space C2

𝑛

. We use H𝑞 to denote this space

and omit 𝑞 when it is evident from context or irrelevant. Unit vectors in H are denoted by |𝜓 ⟩
following Dirac’s notation.

4 Peng Yan, Hanru Jiang, and Nengkun Yu

A state of the quantum system is generally a probabilistic mixture of unit vectors inH , i.e., a

statistical ensemble {(𝑝𝑖 , |𝜓𝑖⟩)} where 𝑝𝑖 ∈ (0, 1] and ∑
𝑖 𝑝𝑖 = 1. A statistical ensemble is called a

pure state or vector state if it contains only one unit vector (i.e., {(1, |𝜓 ⟩)}), otherwise is called a

mixed state. We denote a pure state {(1, |𝜓 ⟩)} by |𝜓 ⟩ for short.
The quantum states obtained along the example of Fig. 1a are all pure states. In the beginning,

both qubits 𝑞0 and 𝑞1 are in the state |0⟩ =
(

1

0

)
, the state encoding a classical bit of value 0. The

initial state of the entire system is thus a pure state |0⟩𝑞0

⊗ |0⟩𝑞1

(written as |00⟩ for short), where
⊗ is the tensor product.

A program modifies the quantum state via two kinds of operations, namely unitary operations

and measurements. In our example, both 𝐻 and CNOT are unitary operations, and we also call

them gates. We skip the details of how these gates change the state for now, but depict the state

transition in Fig. 1b by the arrow in the same row with 𝐻,CNOT. After performing these two gates,

we obtain the Bell state (|00⟩ + |11⟩)/
√

2 with probability 1, where |1⟩ =
(

0

1

)
encodes a classical

bit of value 1. Note that the Bell state is pure, a superposition of unit vectors |00⟩ and |11⟩, which
encodes the two qubits having the same classical bit-value.

A more general way to represent a quantum state {(𝑝𝑖 , |𝜓𝑖⟩)} is to use a density matrix 𝜌 =∑
𝑖 𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖 |. For example, the density matrix of the pure state |0⟩ is simply |0⟩⟨0| =

(
1 0

0 0

)
, and the

density matrix of the mixed state {(1

2
, |0⟩), (1

2
, |1⟩)} is 1

2
|0⟩⟨0| + 1

2
|1⟩⟨1| = 𝐼

2
. One may notice that

there might be multiple ensembles that have the same density matrix representation. In this case,

we do not distinguish these quantum states because they are not physically distinguishable.

2.2 Quantum Operations
A unitary operation over a quantum system 𝑞 is encoded as a unitary matrix of dimension 2

|𝑞 |
, that

is, a matrix𝑈 that satisfies𝑈 †𝑈 = 𝑈𝑈 † = 𝐼 . When applied to a quantum system containing 𝑞, the

unitary operation changes a quantum state 𝜌 into𝑈𝑞𝜌𝑈
†
𝑞 , where𝑈𝑞 is the unitary operation over

the entire system which effectively applies𝑈 over 𝑞, and leaves qubits other than 𝑞 untouched. For

example, if we apply𝑈 to the 𝑞-th qubit in an 𝑛-qubit system, we have

𝑈𝑞 = ⊗1≤𝑖<𝑞𝐼 ⊗ 𝑈 ⊗𝑞+1≤ 𝑗≤𝑛 𝐼 .

We often omit the subscript 𝑞 in𝑈𝑞 when it is clear from the context.

Commonly used single-qubit operators include theHadamard operator𝐻 , and the Pauli operators

𝑋 , 𝑌 , and 𝑍 . Another commonly used operator is the controlled-NOT operator CNOT. The matrices

for these operations are

𝑋 =

(
0 1

1 0

)
𝑌 =

(
0 −𝑖
𝑖 0

)
𝑍 =

(
1 0

0 −1

)
𝐻 =

1

√
2

(
1 1

1 −1

)
CNOT =

©«
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

ª®®®¬.
Behavior of these operators can also be described by its effect on computational basis {|0⟩ , |1⟩}.

For Pauli operators we have 𝑋 |0⟩ = |1⟩, 𝑋 |1⟩ = |0⟩, 𝑌 |0⟩ = 𝑖 |1⟩, 𝑌 |1⟩ = −𝑖 |0⟩, 𝑍 |0⟩ = |0⟩,
𝑍 |1⟩ = − |1⟩. For the Hadamard operator, we have 𝐻 |0⟩ = |+⟩ = 1√

2

(|0⟩ + |1⟩), and 𝐻 |1⟩ = |−⟩ =
1√
2

(|0⟩ − |1⟩).2 The CNOT(𝑞1, 𝑞2) operator takes qubit 𝑞1 as the control qubit and applies 𝑋 (logic

NOT) operator to qubit 𝑞2 if qubit 𝑞1 is in the state |1⟩, that is, |𝑏1⟩𝑞1

⊗ |𝑏2⟩𝑞2

→ |𝑏1⟩𝑞1

⊗ |𝑏1 ⊕ 𝑏2⟩𝑞2

,

where ⊕ is the logical XOR (exclusive or) operation. For example, we have transitions |00⟩ → |00⟩
and |10⟩ → |11⟩ for CNOT gates.

2
Apart from { |0⟩ , |1⟩ }, { |+⟩ , |−⟩ } is another widely used basis for one-qubit system. These two basis can be transformed

to each other by applying the Hadamard operator.

On Incorrectness Logic for Quantum Programs 5

2.3 Quantum Measurements
Programs read information from a quantum system via quantum measurements, which is the source

of probabilistic non-determinism during the execution of a quantum program. A measurement is

described by a set𝑀 of linear operators on H , such that

𝑀 = {𝑀𝑚} with ∑
𝑚 𝑀

†
𝑚𝑀𝑚 = 𝐼H,

where 𝐼H is the identity operator onH , and𝑀
†
𝑚 is the conjugate transpose of𝑀𝑚 . The subscript

𝑚 stands for the measurement outcome. Given a pure state |𝜓 ⟩, after applying a measurement

𝑀 = {𝑀𝑚}, the outcome𝑚 may be observed with probability 𝑝𝑚 = ⟨𝜓 |𝑀𝑚𝑀
†
𝑚 |𝜓 ⟩, the state after

the measurement with outcome𝑚 collapses into 𝑀𝑚 |𝜓 ⟩ /√𝑝𝑚 when 𝑝𝑚 ≠ 0. Here ⟨𝜓 | = |𝜓 ⟩† is
the conjugate transpose of |𝜓 ⟩.
In the example of Fig. 1, measurement serves as the guard of a branching statement: after

the measurement, the quantum program jumps to the branch corresponding to the outcome of

the measurement. The two if-statements measure the two qubits using the measurement 𝑀 =

{|0⟩⟨0| , |1⟩⟨1|}3, and simply skip according to the outcomes. After the first measurement, the

program state collapses into |00⟩ or |11⟩ with equal probability. Only one branch is possible for the

second measurement, and the program state does not change after the measurement.

An orthogonal projection is a linear operator 𝑃 on H that satisfies 𝑃2 = 𝑃 = 𝑃†
, we call it a

projection for short. A projective measurement is a special kind of measurement described by a set

of projections {𝑃𝑚}, that is

𝑀 = {𝑃𝑚} with ∑
𝑚 𝑃𝑚 = 𝐼 and 𝑃𝑚𝑃𝑛 =

{
𝑃𝑚 if𝑚 = 𝑛
0 otherwise

In particular, the measurements in Fig. 1 are projective. A critical property of a projective measure-

ment𝑀 = {𝑃𝑚} is, when a quantum state is a mixture of unit vectors in 𝑃𝑚 for some𝑚, measuring

the state with𝑀 will return the outcome𝑚 for sure, and leave the state unchanged, just like the

case of the second measurement in Fig. 1a.

One-to-one correspondence between a projection and a linear subspace. We do not distinguish

between a projection and its corresponding subspace. Given the eigen decomposition of a projection

𝑃 =
∑

𝑖 |𝑝𝑖⟩⟨𝑝𝑖 |, its corresponding subspace is the space spanned by {|𝑝𝑖⟩}. On the contrary, we

can construct a projection 𝑃 =
∑

𝑖 |𝜓𝑖⟩⟨𝜓𝑖 | for an arbitrary subspace with its complete orthogonal

basis {|𝜓𝑖⟩}. For example, give a projection 𝑃 = |+⟩⟨+| = 1

2

(
1 1

1 1

)
, it corresponds to one-dimensional

subspace spanned by {|+⟩}. For the entire subspace of the one-qubit system, we choose the basis

{|0⟩ , |1⟩} and then get its corresponding projection 𝑃 = |0⟩⟨0| + |1⟩⟨1| = 𝐼 4
.

Fig. 2 further illustrates how a projection 𝑃 takes effects on a quantum state 𝜌 . Projection 𝑃 maps

the state 𝜌 into 𝑃𝜌𝑃 that lies in the subspace 𝑃 ; projection 𝑃⊥ 5
maps the state 𝜌 into 𝑃⊥𝜌𝑃⊥

that

lies in the subspace 𝑃⊥
. The mapping works similarly to the decomposition of Euclidean vectors

where we have Tr(𝑃𝜌𝑃) + Tr(𝑃⊥𝜌𝑃⊥) = Tr(𝜌). The states in subspace 𝑃 and 𝑃⊥
are orthogonal

to each other. For example, projection 𝑃 = |0⟩⟨0| maps state |+⟩⟨+| into state |0⟩⟨0| /2, and its

complement 𝑃⊥ = |1⟩⟨1| maps |+⟩⟨+| into state |1⟩⟨1| /2.

3
when𝑀 is applied on 𝑞0 and leaving 𝑞1 untouched, the corresponding measurement operator over the entire system is

{ |0⟩ ⟨0 | ⊗ 𝐼 , |1⟩ ⟨1 | ⊗ 𝐼 }.
4
If you choose another basis { |+⟩ , |−⟩ }, you will still get the same 𝑃 = |+⟩ ⟨+ | + |−⟩ ⟨−| = 𝐼

5𝑃⊥
is the orthogonal complement of 𝑃 , i.e. 𝑃⊥ = 𝐼 − 𝑃 .

6 Peng Yan, Hanru Jiang, and Nengkun Yu

Fig. 2. Projection 𝑃 on state 𝜌 .

2.4 ProjectiveQuantum Predicates
There are typically two kinds of quantum predicates in the literature. The one we currently do not

study is by D’Hondt and Panangaden [D’hondt and Panangaden 2006], where a quantum predicate

is defined as a Hermitian operator with some constraints. Such predicates are less intuitive from

a classical point of view, because they discuss the expectation (ranging from the interval [0, 1])
instead of a yes/no answer about some quantum state satisfying the predicate.

In this paper, we follow the other class of quantum predicates proposed by [Birkhoff and Neu-

mann 1936], that is, projections. Projections can be viewed as a trade-off between expressiveness

and practicability. As shown in applied quantum Hoare logic [Zhou et al. 2019] and run-time

assertions [Li et al. 2020], projections are sufficient to express important properties, and easy to

work with because of its compact formalism of assertions. The key benefits of using projective

predicates are:

• Projections are easy to implement using existing quantum devices, thus inserting projections

as assertions is logically meaningful and implementable for the dynamic checking.

• Satisfaction of a projection is a boolean function, which coincides with classical predicates,

making it easier to incorporate the idea of IL.

• Projection-based run-time assertions (projective measurements) do not have side effects on

quantum states satisfying the predicates.

Although projections can not model all types of bugs, they have a relatively high performance in

capturing certain types of bugs that enlarge/shrink the subspaces of correct states, as shown in the

example for Grover’s search in Sec. 7.

Before discussing about projective quantum predicates formally, we introduce the support of

positive semi-definite matrices (including density matrices) in Def. 2.1.

Definition 2.1 (Support). If 𝐴 =
∑

𝑖 _𝑖 |𝜓𝑖⟩⟨𝜓𝑖 |, where |𝜓𝑖⟩s are unit vectors in H and _𝑖 > 0,

then the support of 𝐴 is the subspace spanned by {|𝜓𝑖⟩}. I.e., supp(𝐴) = span{|𝜓𝑖⟩}.

In particular, the support of a projection 𝑃 is its corresponding subspace, so we write 𝑃 as a

shorthand of the subspace supp(𝑃) directly. Besides, we also use the inclusion binary relation ⊆ to

denote the partial order on the set of subspaces, and ∈ to represent the membership of subspaces.

Definition 2.2 (Satisfaction). A quantum state 𝜌 satisfies a projection 𝑃 , denoted by 𝜌 ⊨ 𝑃 , if
supp(𝜌) ⊆ 𝑃 . Contrarily, 𝜌 ⊭ 𝑃 if supp(𝜌) ⊈ 𝑃 .

Formally, when using projections as predicates, a quantum state 𝜌 =
∑
𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖 | satisfying a

projection 𝑃 means |𝜓𝑖⟩ ∈ 𝑃 for all 𝑖 , i.e. supp(𝜌) ⊆ 𝑃 . For example, to assert that the initial state

in Fig. 1a encodes a classical bit array 00, we use projection |00⟩⟨00| which corresponds to the

On Incorrectness Logic for Quantum Programs 7

space span{|00⟩}; to assert that the final state is a mixture of states having the same classical value

in both qubits, we use the projection 𝑃= F |00⟩⟨00| + |11⟩⟨11| which corresponds to the space

span{|00⟩ , |11⟩}. The assertion at the end of the program in Fig. 1a holds because the possible final

states are exactly |00⟩ and |11⟩.
The largest projection is the identity operator 𝐼 , corresponding to the entire state space H . The

smallest projection is the 0-operator, instead of the empty set. Any other projection 𝑃 onH has

0 ⊆ 𝑃 ⊆ 𝐼 when interpreted as subspaces.

Logical operations on projections are different from their classical counterparts. We list the

definitions of ¬, ∧, and ∨ in Def. 2.3, where we use projections to denote both the quantum

predicates and their corresponding subspaces.

Definition 2.3. The logical operations for quantum predicates are defined as follows. For any two

quantum predicates 𝑃,𝑄 onH ,

¬𝑃 F 𝑃⊥, 𝑃 ∧𝑄 F 𝑃 ∩𝑄, 𝑃 ∨𝑄 F span(𝑃 ∪𝑄) = ¬(¬𝑃 ∧ ¬𝑄),

where 𝑃⊥
::= 𝐼 − 𝑃 is the orthogonal complement of 𝑃 , and 𝑃⊥

is also a subspace.

The main difference from classical predicates lies in the negation: instead of set complement

as in classical logic, the negation of a projection 𝑃 is its orthogonal complement 𝑃⊥
, which is the

projection 𝐼 − 𝑃 . Here the binary operator − between predicates subtracts linear operators instead

of sets. This difference leads to different meanings of disjunction operation: the disjunction of

projections 𝑃 and 𝑄 is the subspace spanned by all vectors in 𝑃 and 𝑄 , not merely the union of

these two subspaces.
6

In summary, we list the symbols and notations in Table 1 for reference.

Table 1. Symbols and notations.

Symbol Meanings

|𝜓 ⟩ Dirac notation of vector state, equal to matrix representation |𝜓 ⟩⟨𝜓 |.
𝜌 =

∑
𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖 | (partial) density matrix, a statistical ensemble {(𝑝𝑖 , |𝜓 ⟩)} with

∑
𝑝𝑖 ≤ 1.

|𝜓 ⟩𝑞1

⊗ |𝜑⟩𝑞2

product state of the composite system consisting of qubits 𝑞1 and 𝑞2.

𝜌 → 𝑈𝜌𝑈 †
unitary operation𝑈 on 𝜌 .

𝜌 → 𝑀𝑚𝜌𝑀
†
𝑚

Tr(𝑀†
𝑚𝑀𝑚𝜌)

quantum measurement𝑀 = {𝑀𝑚} on 𝜌 with measurement outcome𝑚.

supp(𝐴) subspace spanned by the eigenvectors of matrix 𝐴.

supp(𝑃) is written as 𝑃 for short if 𝑃 is a projection.

𝜌 → 𝑃𝜌𝑃 projection 𝑃 maps the state 𝜌 into 𝑃𝜌𝑃 lying in the subspace supp(𝑃).
|𝜓 ⟩ ∈ 𝑃 vector state |𝜓 ⟩ lies in the subspace 𝑃 .

𝜌 ⊨ 𝑃 satisfaction relation, subspace supp(𝜌) lies in the subspace 𝑃 .

𝑃1 ⊆ 𝑃2 subspace 𝑃1 lies in the subspace 𝑃2.

¬𝑃 the orthogonal complement of subspace 𝑃 , i.e. 𝑃⊥
.

𝑃 ∧𝑄 the subspace spanned by vectors in both 𝑃 and 𝑄 , i.e. 𝑃 ∩𝑄 .

𝑃 ∨𝑄 the subspace spanned by vectors in either 𝑃 or 𝑄 , i.e. span(𝑃 ∪𝑄).

6
The intersection of two subspaces still forms a subspace, but not for the union operation.

8 Peng Yan, Hanru Jiang, and Nengkun Yu

3 CHALLENGES AND OUR KEY IDEAS
We wish to extend IL to the quantum settings. IL triple [presumption] code [result] is interpreted as

every state in the result is reachable from some state in the presumption [O’Hearn 2019]. (1)

To apply this idea to the quantum settings, we need to answer:

• How to characterize an erroneous quantum state using a projection?

• What does it mean by reaching everything in (that is, achieving) the 𝑟𝑒𝑠𝑢𝑙𝑡 predicate in

quantum settings?

• With an incorrectness logic built upon the answers to the previous two questions, can we

reason about quantum programs automatically?

The following three subsections explain the challenges that arise in answering these three questions

correspondingly, and our ideas for addressing them.

3.1 An Obstacle of Characterizing Errors: Satisfaction of a Projection Is Not Precise
Given an assertion 𝑃 like the one at the bottom of Fig. 1a, we first need to answer how to precisely

characterize an erroneous state 𝜌 ⊭ 𝑃 . Unfortunately, projections and satisfaction are unable to

capture some erroneous states without introducing false positives.

For example, let 𝑃𝑐 be the assertion |0⟩⟨0|, and let 𝜌𝑒 =
1

2
(|0⟩⟨0| + |1⟩⟨1|) be an erroneous state

which is a probabilistic mixture of a good state |0⟩⟨0| ⊨ 𝑃𝑐 and a bad state |1⟩⟨1| ⊭ 𝑃𝑐 . Here we
use subscripts 𝑐 and 𝑒 to distinguish between correct and erroneous states or the corresponding

assertions. If we use satisfaction to specify the erroneous state 𝜌𝑒 , we need to find a projection

𝑄𝑒 such that 𝜌𝑒 ⊨ 𝑄𝑒 . If such 𝑄𝑒 exists, it means |0⟩⟨0| ⊆ supp(𝜌𝑒) ⊆ 𝑄𝑒 . That is, a good state

|0⟩⟨0| ⊨ 𝑃𝑐 also satisfies 𝑄𝑒 , which is a false positive.

The problem is that the support of an erroneous state 𝜌𝑒 ⊭ 𝑃 is not necessarily orthogonal to 𝑃 ,

thus characterizing 𝜌𝑒 using satisfaction and projection may falsely capture good states. Classical IL

does not have this problem, because any state 𝜎𝑒 ∉ 𝑝 can be precisely characterized by {𝜎𝑒 } ⊆ ¬𝑝 .

Our idea. We replace satisfaction relationwith an under-approximation relation for characterizing

errors. We say 𝜌 is under-approximated by 𝑃 , denoted by 𝜌 ⊨𝑃 , if supp(𝜌) ⊇ 𝑃 . The under-

approximation relation is the inverted satisfaction. Intuitively, it means that 𝜌 can be a mixture of

states that contains |𝜓𝑖⟩ described by 𝑃 =
∑ |𝜓𝑖⟩⟨𝜓𝑖 |, and vector states in 𝑃 are the “100%” errors.

With this relation, we can characterize 𝜌𝑒 =
1

2
(|0⟩⟨0| + |1⟩⟨1|) by 𝜌𝑒 ⊨|1⟩⟨1| without introducing

false positives.

3.2 An Obstacle of Interpreting Achieving: Impossibility to Reach Every State
Described by a Projection

In IL, the triple requires result to be achieved, which means every state 𝜎 ⊨ result can be obtained

after an execution. For quantum programs, directly adopting this idea by replacing ⊨ with ⊨is not
reasonable, because it is commonly impossible to reach every 𝜌 in the set {𝜌 | 𝜌 ⊨𝑃}.
For example, consider the program measuring a single qubit 𝑞 with𝑀 = {|0⟩⟨0| , |1⟩⟨1|}:

if (𝑀 [𝑞] = true → skip □ false → skip) fi // achieve |0⟩⟨0|

The program has at most 2 possible output states |0⟩⟨0| and |1⟩⟨1| for any input state, thus is unable
to “achieve” a reasonable projection |0⟩⟨0|, which under-approximates an infinite set of states, e.g.,

{_ |0⟩⟨0| + (1 − _) |1⟩⟨1| | _ ∈ (0, 1]}. How should we interpret “achieving” a projection in the

quantum settings to make the reachability analysis meaningful?

On Incorrectness Logic for Quantum Programs 9

Our idea. We interpret achieving 𝑃 as: 𝑃 under-approximates the probabilistic mixture of reach-

able states. This interpretation is reasonable in the sense that, if 𝑃 is achieved, then any pure state

|𝜓 ⟩ ∈ 𝑃 can be obtained by measuring the final state of some execution path, using the measurement

{|𝜓 ⟩⟨𝜓 | , 𝐼 − |𝜓 ⟩⟨𝜓 |}.
With such an interpretation, we avoid reaching infinitely many states to achieve a projection. In

the above example, |0⟩⟨0| is the only non-trivial projection that under-approximates the possible

output state |0⟩. We achieve the projection |0⟩⟨0| whenever it is possible to obtain the state |0⟩ via
the false branch.
The semantics of a QIL triple [𝑃]𝑆 [𝑄] follows directly from this interpretation of “achieving”:

If a state achieves 𝑃 , the mixture of its reachable states after executing 𝑆 achieves 𝑄.

It can be equivalently described as post(𝑆)𝑃 ⊇ 𝑄 , which is dual to the correctness triple post(𝑆)𝑃 ⊆ 𝑄

in aQHL. Here post is the largest achievable postcondition defined formally in Sec. 5.3.

We list the key ingredients of IL and QIL discussed above in Table 2 for comparison.

Table 2. Comparison of the key ingredients in IL and QIL. Here 𝜎 and 𝑝 are classical state and predicate, 𝜌
and 𝑃 are quantum state and projection.

Key Ingredients IL QIL

Assertion 𝑝 (set of states) 𝑃 (linear subspace)

𝜎 or 𝜌 is erroneous 𝜎 ∈ ¬𝑝 𝜌 ⊨𝑄 for some 𝑄 ⊈ 𝑃

𝑝 or 𝑃 is achieved (⋃𝜎 reachable
{𝜎}) ⊇ 𝑝

(∑
𝜌 reachable

𝜌

)
⊨𝑃

3.3 An Obstacle of Automation: Bounding Iteration of Loops May Sacrifice
Completeness

Based on the QIL triple above, we derive a set of proof rules that is sound and complete. One

remaining question is how to automate the reasoning based on the proof rules. The main problem

lies in the While-rule below: inferring the backward variant 𝑃𝑛 requires infinite loop unrolling.

∀𝑛. ⊢ [supp(𝑀1𝑃𝑛𝑀
†
1
)]𝑆 [𝑃𝑛+1]

⊢ [𝑃0]while𝑀 [𝑞] = 1 do 𝑆 od[supp(𝑀0𝑃𝑁𝑀
†
0
)]

IL solves this problem by fixing a bound for loop unrolling at the expense of sacrificing completeness

when the set of states is infinite. For QIL, the same sacrifice seems inevitable because the state

space is an infinite set, even for a finite-dimensional quantum system. We are curious whether this

solution applies to the quantum settings and what has to be paid for bounding loop unrolling.

Our idea. We observe that for a finite-dimensional state space, the projection∨𝑖≤𝑁 supp(𝑀0𝑃𝑖𝑀
†
0
)

does not change when 𝑁 is larger than the dimension of state space H . This enables us to replace

the While-rule with a bounded version below, while retaining completeness argument.

∀𝑛 < dim(H). ⊢ [supp(𝑀1𝑃𝑛𝑀
†
1
)]𝑆 [𝑃𝑛+1]

⊢ [𝑃0]while𝑀 [𝑞] = 1 do 𝑆 od[∨𝑖≤𝑁 supp(𝑀0𝑃𝑖𝑀
†
0
)]

The reason behind this observation is that ∨𝑖≤𝑁 supp(𝑀0𝑃𝑖𝑀
†
0
) is increasing w.r.t. relation ⊆ as 𝑁

grows, while its rank is bounded by the dimension of state spaceH . The bounded version of the

While rules enables computing post(𝑆)𝑃 within finite steps effectively. Recall that validity of a QIL

triple and aQHL triple can be decided by comparing post(𝑆)𝑃 with 𝑄 . The boundedWhile rules

not only make our logic decidable but also enable automatic verification of an aQHL triple.

10 Peng Yan, Hanru Jiang, and Nengkun Yu

4 THE EXTENDED QUANTUMWHILE LANGUAGE
In this section, we introduce our quantum programming language with classical controls, which

extends the quantum while language [Perdrix 2008a,b; Ying 2012] by adding the error statement

to capture errors and encode assert statements.

4.1 Syntax
The syntax of our program language is defined in Fig. 3. We use 𝑞 to represent the identity of a

qubit and 𝑞 to represent a quantum register, that is, a list of different qubits. The skip statement

explains itself. Two statements 𝑆1 and 𝑆2 can be sequenced by 𝑆1; 𝑆2. Below we explain the other

statements.

(Stmts) 𝑆 ::= skip | 𝑆1; 𝑆2 | 𝑞 := |0⟩ | 𝑞 := 𝑈𝑞 | if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi
| while𝑀 [𝑞] = 1 do 𝑆 od | error

assert(𝑞, 𝑃) ::= if (𝑀𝑃 [𝑞] = true → skip □ false → error)fi
where𝑀𝑃 = {𝑀true, 𝑀false}, 𝑀true = 𝑃,𝑀false = 𝐼 − 𝑃 .

Fig. 3. The syntax of the extended quantum while language (above); encoding the assert statement (below).

The statement 𝑞 := |0⟩ initializes a qubit 𝑞 to state |0⟩. Formally, initializing a qubit 𝑞 in a quantum

systemwould change the state 𝜌 into |0⟩𝑞 ⟨0|𝜌 |0⟩𝑞 ⟨0|+ |0⟩𝑞 ⟨1|𝜌 |1⟩𝑞 ⟨0|, where |𝑛⟩𝑞 ⟨𝑚 | is the operator
|𝑛⟩⟨𝑚 | on qubit 𝑞. The statement 𝑞 := 𝑈𝑞 applies a unitary transformation 𝑈 on the quantum

register 𝑞 and changes the state 𝜌 into 𝑈𝜌𝑈 †
. The case statement if (□𝑚 · 𝑀 [𝑞] = 𝑚 → 𝑆𝑚) fi

performs a quantum measurement 𝑀 on the register 𝑞, and executes subprogram 𝑆𝑚 according

to the measurement outcome 𝑚. Loop statement while 𝑀 [𝑞] = 1 do 𝑆 od performs a yes-no

measurement with two possible outcomes 0 and 1, then terminates or executes 𝑆 and reenters the

loop correspondingly. Recall that measurement has side effects on quantum states; the branches/loop

bodies will start with a collapsed state after measurement.

The newly introduced error statement halts the execution and signals an error. One of the main

applications of error is to encode projection-based assertions [Li et al. 2020] for quantum programs,

to test whether a property holds at a particular program point.

An assertion in classical programming languages typically tests whether a predicate (a boolean-

valued function over program states) holds at a particular program point. If the test succeeds, the

execution continues, otherwise the program terminates abnormally and may throw an exception.

For quantum programs, such tests on quantum states are not generally feasible because i) the only

way to observe a quantum state is by measuring the state, and ii) measurement has side effects

over quantum states in general.

To achieve a quantum counterpart of an assertion, we restrict the predicate to be a projective

measurement, following the approach of [Li et al. 2020]. Concretely, we encode the assert(𝑞, 𝑃)
statement at the bottom of Fig. 3, where 𝑃 is a projection over space H𝑞 , indicating a certain

property over 𝑞. Projective measurement is suitable for encoding assertions because for a state 𝜌 ,

• if supp(𝜌) ⊆ 𝑃 , the outcome of𝑀𝑃 [𝑞] over 𝜌 will be true for sure, and 𝜌 keeps unchanged

after measurement, thus assertions will not affect future executions,

• otherwise, there is a non-zero probability that the outcome of𝑀𝑃 [𝑞] is false, and an error

would arise.

An abnormal termination caused by assert(𝑞, 𝑃) can then be viewed as evidence of a bug. Intuitively,
it means some part in 𝜌 lies out of 𝑃 .

On Incorrectness Logic for Quantum Programs 11

4.2 Semantics
The semantics of the extended quantum while programs is standard, except for the treatment of

the newly introduced error statement. To distinguish abnormal terminations caused by error from
those normal terminations, we adopt the exit condition 𝜖 from the incorrectness logic [O’Hearn

2019].

(ExitCond) 𝜖 ::= ok | er
The value of an exit condition 𝜖 can be either ok or er. Here ok is for normal terminations and er

is for abnormal terminations caused by error statements. We call the output of normal/abnormal

terminations as normal/abnormal states, respectively.

We assume that any quantum program corresponds to a fixed qubit system, and free variables in

the program are within the corresponding state space H of the system. Program states are defined

as partial density matrices following Selinger’s normalization convention [Selinger 2004]. A partial

density matrix 𝜌 guarantees only Tr(𝜌) ≤ 1 instead of Tr(𝜌) = 1, which allows us to absorb the

probability of reaching a state as a scalar factor. Formally, the set of partial density matrices over

H (denoted by D− (H)) is defined below, as we use 𝜌 for elements in D− (H). In particular, 0 is a
partial density matrix representing an impossible state.

D− (H) = {∑𝑖 𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖 | | 𝑝𝑖 ≥ 0 ∧∑
𝑖 𝑝𝑖 ≤ 1 ∧ |𝜓𝑖⟩ ∈ H}

4.2.1 Operational Semantics. The operational semantics of our language is formalized in Fig. 4.

We model the operational semantics by labelled transitions over program configurations of the

form ⟨𝑆, 𝜌⟩, where 𝑆 is the remaining code to be executed, and 𝜌 is the current program state. The

transition relation→ is a ternary relation of type

(Stmt × D− (H)) × ExitCond × ((Stmt ∪ {↓}) × D− (H)),
where ↓ is used to denote the termination of a program by convention. A transition is denoted by

⟨𝑆, 𝜌⟩ 𝜖−→ ⟨𝑆 ′, 𝜌 ′⟩, and the label 𝜖 ranges from {ok, er} to indicate a normal/abnormal transition.

⟨skip, 𝜌⟩ ok−−→ ⟨↓, 𝜌⟩ ⟨error, 𝜌⟩ er−→ ⟨↓, 𝜌⟩ ⟨𝑞 := 𝑈𝑞, 𝜌⟩ ok−−→ ⟨↓,𝑈 𝜌𝑈 †⟩

⟨𝑞 := |0⟩ , 𝜌⟩ ok−−→ ⟨↓,∑𝑛 |0⟩𝑞 ⟨𝑛 |𝜌 |𝑛⟩𝑞 ⟨0|⟩ ⟨if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi, 𝜌⟩ ok−−→ ⟨𝑆𝑚, 𝑀𝑚𝜌𝑀
†
𝑚⟩

⟨𝑆1, 𝜌⟩
ok−−→ ⟨↓, 𝜌 ′⟩

⟨𝑆1; 𝑆2, 𝜌⟩
ok−−→ ⟨𝑆2, 𝜌

′⟩

⟨𝑆1, 𝜌⟩
ok−−→ ⟨𝑆 ′

1
, 𝜌 ′⟩

⟨𝑆1; 𝑆2, 𝜌⟩
ok−−→ ⟨𝑆 ′

1
; 𝑆2, 𝜌

′⟩

⟨𝑆1, 𝜌⟩
er−→ ⟨↓, 𝜌 ′⟩

⟨𝑆1; 𝑆2, 𝜌⟩
er−→ ⟨↓, 𝜌 ′⟩

⟨while𝑀 [𝑞] = 1 od 𝑆 od, 𝜌⟩ ok−−→ ⟨↓, 𝑀0𝜌𝑀
†
0
⟩

⟨while𝑀 [𝑞] = 1 do 𝑆 od, 𝜌⟩ ok−−→ ⟨𝑆 ;while𝑀 [𝑞] = 1 do 𝑆 od, 𝑀1𝜌𝑀
†
1
⟩

Fig. 4. Operational semantics.

Transitions labelled by ok in Fig. 4 are essentially the same as the standard operational semantics

in the quantum Hoare logic [Ying 2012]. We explain the two transitions with the er label. The

transition rule for error is intuitive. It simply terminates the execution, raises an er label, and returns

the quantum state. The transition rule for 𝑆1; 𝑆2 with the er label says that when the execution of 𝑆1

encounters an error, then the execution of the entire program immediately terminates abnormally,

12 Peng Yan, Hanru Jiang, and Nengkun Yu

discarding the remaining code including 𝑆2. To describe multiple-step executions where only the

final execution has an interesting label, we use the notation

𝜖−→
∗
, where 𝜖 is the exiting condition,

and 𝜖 = ok if no step is taken.

4.2.2 Denotational Semantics. As mentioned in Sec. 3, “the mixture of all reachable states” is a

critical component of our incorrectness triple. The operational semantics characterizes one possible

execution path at a time, which is not convenient for formalizing the incorrectness triple. We

introduce denotational semantics to collect those reachable states from an input program state. The

denotational semantics prove to be equivalent to the standard operational semantics.

By convention, we use ⟦𝑆⟧𝜖 to denote the semantic function of a program 𝑆 with exit condition 𝜖 .

The semantic function has the type below. Intuitively, ⟦𝑆⟧𝜖 maps a program state to the collection

of reachable final states with exit condition 𝜖 .

⟦𝑆⟧𝜖 : D− (H) → Mset(D− (H))

Here Mset(𝐴) is the type of multi-sets (sometimes called bags) over the universe 𝐴. A multi-set is

defined as a function of type 𝐴 → N that maps an element to its multiplicity. We use multi-sets

instead of sets because the same final state might be obtained from different execution paths.

⟦error⟧𝑜𝑘𝜌 = 0 ⟦error⟧𝑒𝑟 𝜌 = 𝜌

⟦skip⟧𝑜𝑘𝜌 = 𝜌 ⟦skip⟧𝑒𝑟 𝜌 = 0

⟦𝑞 := |0⟩⟧𝑜𝑘𝜌 =
∑ |0⟩𝑞 ⟨𝑛 |𝜌 |𝑛⟩𝑞 ⟨0| ⟦𝑞 := |0⟩⟧𝑒𝑟 𝜌 = 0

⟦𝑞 := 𝑈𝑞⟧𝑜𝑘𝜌 = 𝑈𝜌𝑈 † ⟦𝑞 := 𝑈𝑞⟧𝑒𝑟 𝜌 = 0

⟦𝑆1; 𝑆2⟧𝑜𝑘 = ⟦𝑆1⟧𝑜𝑘 ◦ ⟦𝑆2⟧𝑜𝑘 ⟦𝑆1; 𝑆2⟧𝑒𝑟 = (⟦𝑆1⟧𝑜𝑘 ◦ ⟦𝑆2⟧𝑒𝑟) ⊎ ⟦𝑆1⟧𝑒𝑟

⟦if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi⟧𝑜𝑘 =
⊎
𝑚 (M𝑚 ◦ ⟦𝑆𝑚⟧

ok
)

⟦if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi⟧𝑒𝑟 =
⊎
𝑚 (M𝑚 ◦ ⟦𝑆𝑚⟧er)

⟦while𝑀 [𝑞] = 1 do 𝑆 od⟧
ok

=
⊎

𝑛∈N ((M1 ◦ ⟦𝑆⟧ok)𝑛 ◦M0)

⟦while𝑀 [𝑞] = 1 do 𝑆 od⟧er =
⊎

𝑛∈N ((M1 ◦ ⟦𝑆⟧ok)𝑛 ◦ (M1 ◦ ⟦𝑆⟧er))

M𝑚𝜌 = 𝑀𝑚𝜌𝑀
†
𝑚 a1 ⊎ a2 = {(𝜌, a1 (𝜌) + a2 (𝜌)) | 𝜌 ∈ D− (H)}

(R1 ⊎ R2)𝜌 = R1𝜌 ⊎ R2𝜌 R0𝜌 = {(𝜌, 1)} R𝑛 = R𝑛−1 ◦ R

(R1 ◦ R2)𝜌 = {(𝜌 ′′, 𝑛1𝑛2) | 𝑛1 = R1𝜌𝜌
′ ∧ 𝑛2 = R2𝜌

′𝜌 ′′ ∧ 𝜌, 𝜌 ′, 𝜌 ′′ ∈ D− (H)}

Fig. 5. Denotational semantics.

Formally, we define the semantic function in Fig. 5, with auxiliary definitions listed at the bottom.

Most of the formulations explain themselves. We assign the meaning of impossible executions

like ⟦error⟧ok𝜌 with the 0-state, indicating this is an impossible event. Among these auxiliary

definitions, M𝑚 denotes the semantic function of𝑀𝑚 in the measurement𝑀 , and we use R for a

function of type D− (H) → Mset(D− (H)), R𝜌 is the multi-set obtained by applying R to 𝜌 , and

R𝜌𝜌 ′
is the multiplicity of 𝜌 ′

in R𝜌 . The operation a1 ⊎ a2 is the union operation over multi-sets a1

and a2, and in R1 ⊎ R2, ⊎ is the pointwise lifted operation between multi-set valued functions. By

our denotational semantics, the probabilistic mixture of all reachable states can be formulated by

On Incorrectness Logic for Quantum Programs 13

the sum of a multi-set a of partial density matrices. The sum converges [Selinger 2004; Ying 2012]

and thus is well-defined.

For example, let 𝑆Bell be the program in Fig. 1a. Then we have

⟦𝑆Bell⟧ok (|00⟩⟨00|) = {| 1

2
|11⟩⟨11| , 0, 0, 1

2
|00⟩⟨00| |},

where the two 0-states correspond to the two impossible branches. The multi-set notation {| · |}
wraps the elements and repeats them with their corresponding multiplicities. Since we have

already absorbed the probability
7
of its corresponding execution into the partial density matrix,

the probabilistic mixture of all reachable states is obtained by summing up the multi-set directly:∑⟦𝑆Bell⟧ok (|00⟩⟨00|) = 1

2
|11⟩⟨11| + 1

2
|00⟩⟨00| .

It is straightforward to prove that the denotational semantics is equivalent to the operational

semantics, as formulated in Theorem. 4.1. The proof is an induction on the structure of a program.

Theorem 4.1. For any program 𝑆 , and 𝜌 ∈ D− (H), the denotational semantics is equivalent to the

operational semantics modulo 0-states, that is,

(⟦𝑆⟧𝜖𝜌){0 { 0} = ({(𝜌 ′, 𝑛) | ⟨𝑆, 𝜌⟩ 𝜖−→
∗
𝑛 ⟨↓, 𝜌 ′⟩}){0 { 0}.

Here {0 { 0} means discarding 0-states from the multi-set. We discard 0-states because the de-
notational semantics would introduce other multiplicities of 0-states when encountering impossible

executions like skip with er exit condition. The notation ⟨𝑆, 𝜌⟩ 𝜖−→
∗
𝑛 ⟨↓, 𝜌 ′⟩ means there are 𝑛 distin-

guished execution paths that terminates at 𝜌 ′
with exit condition 𝜖 .

5 SPECIFICATION FORMULA
In this section, we develop the quantum incorrectness triple of the form [𝑃]𝑆 [𝜖 :𝑄]. Intuitively, if
𝑃 under-approximates the initial state, then 𝑄 under-approximates the probabilistic mixture of

reachable final states with exit condition 𝜖 . Here 𝑃 and 𝑄 are projection-based quantum predicates

treated semantically using their corresponding matrices.

5.1 Under-approximatingQuantum States
In the context of bug-catching, the triple [𝑃]𝑆 [𝜖 :𝑄] first needs to characterize erroneous states

using a predicate. In the classical settings, characterizing an erroneous state 𝜎 w.r.t. a predicate 𝑝 is

straight forward by using satisfaction and negation of the predicate:

𝜎 ⊭ 𝑝 ⇔ 𝜎 ⊨ ¬𝑝. (2)

However, satisfaction is not suitable for characterizing incorrectness in the quantum settings:

given an assertion 𝑃𝑐 and an erroneous state 𝜌𝑒 ⊭ 𝑃𝑐 , sometimes we cannot find an appropriate

𝑄𝑒 such that 𝜌𝑒 ⊨ 𝑄𝑒 and 𝑄𝑒 excludes correct states, i.e., any 𝜌𝑐 ⊨ 𝑃𝑐 does not satisfy 𝑄𝑒 . More

concretely, let 0 ⊂ 𝑃𝑐 ⊂ 𝐼 , and let 𝜌𝑒 = 𝐼/Tr(𝐼) ⊭ 𝑃𝑐 , then any 𝑄𝑒 that has 𝜌𝑒 ⊨ 𝑄𝑒 would falsely

capture any state 𝜌𝑐 ⊨ 𝑃𝑐 , because supp(𝜌𝑐) ⊆ 𝐼 = supp(𝜌𝑒) ⊆ 𝑄𝑒 .

To capture incorrect quantum states, we need a quantum version of equation (2). We achieve

this goal by introducing the under-approximation relation.

Definition 5.1 (Under-approximation). A projection 𝑃 under-approximates a quantum state

𝜌 ∈ D− (H), denoted by 𝜌 ⊨𝑃 , if supp(𝜌) ⊇ 𝑃 .

7
The probability of certain branch is the trace of the corresponding output state (partial density matrix).

14 Peng Yan, Hanru Jiang, and Nengkun Yu

As we can see, under-approximation relation can precisely characterize errors:

𝜌𝑒 ⊭ 𝑃𝑐 =⇒ ∃𝑄𝑒 ≠ 0. (𝜌𝑒 ⊨𝑄𝑒) ∧ (∀𝜌 ′
𝑒 ⊨𝑄𝑒 . 𝜌

′
𝑒 ⊭ 𝑃𝑐).

That is, for any erroneous state 𝜌𝑒 violating 𝑃𝑐 , it can be under-approximated by some non-

trivial projection 𝑄𝑒 , and this under approximation will not falsely capture correct states. Under-

approximation relation is also crucial for interpreting “achieving” a predicate, which we will explain

later.

The under-approximation relation is the inverted satisfaction. Logical connections under the

under-approximation relation are sometimes counter intuitive compared with those under the

satisfaction, for example:

𝜌 ⊨ 𝑃1 ∧ 𝜌 ⊨ 𝑃2 ⇔ 𝜌 ⊨ 𝑃1 ∧ 𝑃2

𝜌 ⊨𝑃1 ∧ 𝜌 ⊨𝑃2 ⇔ 𝜌 ⊨𝑃1 ∨ 𝑃2 .

5.2 Incorrectness Triple forQuantum Programs
Based on the under-approximation relation, we generalize the incorrectness triple by O’Hearn

to the quantum settings and obtain the validity defined below. In this definition, “achieving” a

projection 𝑄 is interpreted as 𝑄 under-approximating the mixture of reachable states.

Definition 5.2 (Strong Validity). A QIL triple is strongly valid (or valid for short), denoted by

⊨ [𝑃]𝑆 [𝜖 :𝑄] if for any 𝜌 ∈ D− (H) we have
𝜌 ⊨𝑃 ⇒ ∑⟦𝑆⟧𝜖𝜌 ⊨𝑄 .

We use the term strong validity to distinguish this formulation from those alternatives in Sec. 8.

This definition says that if a state is under-approximated by 𝑃 , the mixture of its reachable states

with exit condition 𝜖 is under-approximated by 𝑄 . We argue that this interpretation of “achieving”

is reasonable from a reachability point of view: given ⊨ [𝑃]𝑆 [𝜖 :𝑄], starting from an initial state

under-approximated by 𝑃 , it is possible (with non-zero probability) to obtain any pure state |𝜓 ⟩ ∈ 𝑄

by measuring some reachable state (with exit condition 𝜖) using the measurement𝑀 = {|𝜓 ⟩⟨𝜓 | , 𝐼 −
|𝜓 ⟩⟨𝜓 |}.
Introducing the mixture of reachable states instead of discussing single execution paths is crucial

for efficient reasoning. It allows us to have the disjunction rule, without which the number of

post-conditions grows exponentially with respect to the number of sequenced branches. Alternative

formulations based on a single execution path (classical and strict validities) can be found in Sec 8,

where we discuss in more detail why the disjunction rule does not hold for these formulations and

the consequences of not having such a rule.

Although the formulation compares 𝑄 with the mixture of the reachable states of all execution

paths, it is safe to find smaller 𝑄 corresponding to some executions to construct a valid triple. This

coincides with the remark by O’Hearn [O’Hearn 2019]:

“For correctness reasoning, you get to forget information as you go along a path, but

you must remember all the paths. For incorrectness reasoning, you must remember

information as you go along a path, but you get to forget some of the paths.”

The validity of an incorrectness triple sets the theoretical foundation for static bug-catching

with projection-based assertions [Li et al. 2020]. It is straightforward from Def. 5.2 that for the

assert(𝑞, 𝑅) statement and any presumption 𝑃 , we have ⊨ [𝑃]assert(𝑞, 𝑅) [er :supp(𝑅⊥𝑃𝑅⊥)]. 8
While the correctness triple ⊨ {𝑅}assert(𝑞, 𝑅){𝑅} of the applied quantum Hoare logic [Zhou et al.

2019] guarantees that we can safely ignore the assert statement in the reasoning when the assertion

8
We write result assertions in red for abnormal termination.

On Incorrectness Logic for Quantum Programs 15

is satisfied, an incorrectness triple ⊨ [𝑃]assert(𝑞, 𝑅) [er :supp(𝑅⊥𝑃𝑅⊥)] with 𝑅⊥𝑃𝑅⊥ ≠ 0 ensures

the assertion would raise an er with non-zero probability for some state 𝜌 ⊨𝑃 .
More discussions about the validity of incorrectness triples are given in Sec 8 if readers are

interested in why we choose such a kind of formulation.

5.3 Duality Between Correctness and Incorrectness Triples
Validity of triples in QIL and the applied quantum Hoare logic [Zhou et al. 2019] are two sides of

the same coin when interpreted with predicate transformers.

Definition 5.3. For any quantum program 𝑆 defined in Section 4.2 and quantum predicate 𝑃 , we

define the post image of program 𝑆 with respect to 𝑃 as follows

𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖)𝑃 = supp(∑⟦𝑆⟧𝜖 (𝜌)) where 𝜌 =

{
𝑃/𝑇𝑟 (𝑃) if 𝑃 ≠ 0
0 otherwise

Note that the choice of 𝜌 is not unique: any 𝜌 that has supp(𝜌) = 𝑃 would result in an equivalent

definition. Based on the operator 𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖), we give an equivalent formulation for the validity of

incorrectness triple in Lemma 5.1.

Lemma 5.1. For a quantum program 𝑆 and a quantum predicate 𝑃 , we have

⊨ [𝑃]𝑆 [𝜖 :𝑄] iff 𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖)𝑃 ⊇ 𝑄

The operator 𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖) reveals the connection between the applied quantum Hoare logic

[Zhou et al. 2019] and QIL. It is straightforward that when 𝑆 does not contain the error statement,

𝑝𝑜𝑠𝑡 (⟦𝑆⟧ok)𝑃 ⊆ 𝑄 is exactly the partial correctness validity ⊨a
par

{𝑃}𝑆{𝑄} in the applied quantum

Hoare logic. The duality is then obvious, as shown below.

⊨a
par

{𝑃}𝑆{𝑄} iff 𝑝𝑜𝑠𝑡 (⟦𝑆⟧ok)𝑃 ⊆ 𝑄

⊨ [𝑃]𝑆 [𝜖 :𝑄] iff 𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖)𝑃 ⊇ 𝑄

Specifically, we prove that the projection 𝑝𝑜𝑠𝑡 (⟦𝑆⟧ok)𝑃 is the strongest over-approximate post

for applied Hoare logic and the weakest under-approximate post for QIL, as shown in Lemma 5.2.

Lemma 5.2. When 𝑆 does not contain the error statement, for any projection 𝑃 we have

𝑝𝑜𝑠𝑡 (⟦𝑆⟧ok)𝑃 = ∧{𝑄 |⊨a
par

{𝑃}𝑆{𝑄}}
𝑝𝑜𝑠𝑡 (⟦𝑆⟧𝜖)𝑃 = ∨{𝑄 |⊨ [𝑃]𝑆 [𝜖 :𝑄]}

Since the weakest under-approximate post is the disjunction of all quantum post predicates

satisfying [𝑃]𝑆 [𝜖 :𝑄], Lemma 5.2 gives a starting point for under-approximating program analysis

and guarantees that incorrectness reasoning is sound when shrinking the postcondition.

Why not directly replace all quantum behavior with non-determinism for pure reachability analysis?

Here we discuss why we do not choose the set of quantum states as predicates, and apply classical

incorrectness logic directly. One is that sets are less compact compared with projections. For

example, given a set of the form {|𝜓 ⟩ | |𝜓 ⟩ = cos(𝑥𝑖) |00⟩ + sin(𝑥𝑖) |11⟩}, where 𝑥𝑖 is the 𝑖-th number

in the sequence of Collatz conjecture for a random integer 𝑛. It is hard to specify the elements in

the set neatly (basically a record of the sequence), but it can be easily regulated by a projection

|00⟩⟨00| + |11⟩⟨11|.
Another reason is that, when used as loop invariants/variants, sets may converge much slower

than projections. Take Grover’s algorithm as an example, the state within the loop body keeps

rotating in a 2-dimensional subspace, which means the corresponding projection converges within

3 loop unrolling (constant time!). If we use sets instead, since the resulting states after each iteration

16 Peng Yan, Hanru Jiang, and Nengkun Yu

are very likely to be different from each other (e.g., by choosing 𝑁 = 5 and 𝑀 = 1), we will

have to keep unrolling the while-loop until the program terminates (depending on the number of

iterations).

6 THE PROOF SYSTEM
In this section, we develop the proof system for QIL based on the strong validity in Def. 5.2. The

proof rules of quantum incorrectness logic are shown in Fig. 6. Following O’Hearn [O’Hearn 2019],

we use ⊢ [𝑃]𝑆 [ok :𝑄1] [er :𝑄2] as an abbreviation for ⊢ [𝑃]𝑆 [ok :𝑄1] and ⊢ [𝑃]𝑆 [er :𝑄2]. We write

result assertions for normal termination in green and abnormal in red.

Empty

⊢ [𝑃]𝑆 [𝜖 :0]
Error

⊢ [𝑃]error[ok :0] [er :𝑃]
Skip

⊢ [𝑃]skip[ok :𝑃] [er :0]

Unitary

⊢ [𝑃]𝑞 := 𝑈 [𝑞] [ok :𝑈𝑃𝑈 †] [er :0]
Init

⊢ [𝑃]𝑞 := |0⟩ [ok :supp(
∑︁
𝑛

|0⟩𝑞 ⟨𝑛 |𝑃 |𝑛⟩𝑞 ⟨0|)] [er :0]

Seq1

⊢ [𝑃]𝑆1 [ok :𝑅] ⊢ [𝑅]𝑆2 [𝜖 :𝑄]
⊢ [𝑃]𝑆1; 𝑆2 [𝜖 :𝑄]

Seq2

⊢ [𝑃]𝑆1 [er :𝑄]
⊢ [𝑃]𝑆1; 𝑆2 [er :𝑄]

Order

𝑃 ⊇ 𝑃 ′ ⊢ [𝑃 ′]𝑆 [𝜖 :𝑄 ′] 𝑄 ′ ⊇ 𝑄

⊢ [𝑃]𝑆 [𝜖 :𝑄]

Disjunction

⊢ [𝑃1]𝑆 [𝜖 :𝑄1] ⊢ [𝑃2]𝑆 [𝜖 :𝑄2]
⊢ [𝑃1 ∨ 𝑃2]𝑆 [𝜖 :𝑄1 ∨𝑄2]

If

⊢ [supp(𝑀𝑚𝑃𝑀
†
𝑚)]𝑆𝑚 [𝜖 :𝑄]

⊢ [𝑃]if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi[𝜖 :𝑄]

While1

∀𝑛. ⊢ [supp(𝑀1𝑃𝑛𝑀
†
1
)]𝑆 [ok :𝑃𝑛+1]

⊢ [𝑃0]while𝑀 [𝑞] = 1 do 𝑆 od[ok : supp(𝑀0𝑃𝑁𝑀
†
0
)]

While2

∀𝑛. ⊢ [supp(𝑀1𝑃𝑛𝑀
†
1
)]𝑆 [ok :𝑃𝑛+1]

⊢ [supp(𝑀1𝑃𝑁𝑀
†
1
)]𝑆 [er :𝑄]

⊢ [𝑃0]while𝑀 [𝑞] = 1 do 𝑆 od[er :𝑄]

Fig. 6. Proof rules for quantum incorrectness logic.

The first three rules have similar forms as their classical counterparts. The Empty rule is a direct

generalization of its classical counterpart, where 0 is a trivial valid post predicate that contains no

meaningful state, a quantum extension to the classical false assertion (the empty set). The Error

and Skip rules are straightforward from their semantics since they do not modify the program state

along er and ok paths, respectively.

The Unitary and Init rules characterize how these two statements alter the support of quantum

state. Note that in the Init rule,

∑
𝑛 |0⟩𝑞 ⟨𝑛 |𝑃 |𝑛⟩𝑞 ⟨0| is not necessarily a projection, we need to lift

it to its support before assigning as a postcondition.

The Seq rules are of the same form as in classical settings, where Seq1 is for normal sequencing,

and Seq2 is for short-circuiting when 𝑆1 raises an er.

The Order rule is the quantum version of the classical consequence rule. By interpreting the

subset relation as implication ⇒, the rule has the same form of the consequence rule below.

𝑃 ⇐ 𝑃 ′ ⊢ [𝑃 ′]𝑆 [𝜖 :𝑄 ′] 𝑄 ′ ⇐ 𝑄

⊢ [𝑃]𝑆 [𝜖 :𝑄]

On Incorrectness Logic for Quantum Programs 17

Rules for dropping conjunctions/disjunctions can be derived from the Order rule by noticing the

fact that 𝑃𝑖 ⊇ 𝑃1 ∧ 𝑃2 and 𝑄1 ∨𝑄2 ⊇ 𝑄𝑖 for 𝑖 ∈ {1, 2}, as shown below.

⊢ [𝑃1 ∧ 𝑃2]𝑆 [𝜖 :𝑄]
⊢ [𝑃𝑖]𝑆 [𝜖 :𝑄]

⊢ [𝑃]𝑆 [𝜖 :𝑄1 ∨𝑄2]
⊢ [𝑃]𝑆 [𝜖 :𝑄𝑖]

Note that the ability to shrink the postcondition soundly is a hallmark of under-approximation,

which allows us to control the reasoning scale.

The Disjunction rule is also a quantum version of its classical counterpart. It allows us to merge

the reasoning for multiple branches, which is crucial to the efficiency of reasoning.

The If rule is the quantum analogy of the Choice rule in IL. The difference lies in the premise of

the rule, where we require ⊢ [supp(𝑀𝑚𝑃𝑀
†
𝑚)]𝑆 [𝜖 :𝑄] instead of ⊢ [𝑃]𝑆 [𝜖 :𝑄] because measurement

has a side effect on the quantum state.

The While rules can be interpreted as a finite sequential composition of the If rule and Seq

rules after unrolling the loop body for finite times, where 𝑃𝑛 represents the result predicate for the

𝑛-fold sequential composition of measurement and the loop body. Recall that incorrectness logic is

for the reasoning about reachability; these rules do not require the termination of all executions

but only guarantee some execution paths that reach the result predicate.

Assert

𝑄
ok

= supp(𝑅𝑃𝑅†) 𝑄er = supp(𝑅⊥𝑃𝑅⊥†)
[𝑃]assert(𝑞, 𝑅) [ok :𝑄

ok
] [er :𝑄er]

Derived If

⊢ [supp(𝑀𝑚𝑃𝑀
†
𝑚)]𝑆𝑚 [𝜖 :𝑄𝑚] for all𝑚

⊢ [𝑃]if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi[𝜖 :∨𝑄𝑚]
Derived While

∀𝑛 < 𝑁 . ⊢ [supp(𝑀1𝑃𝑛𝑀
†
1
)]𝑆 [ok :𝑃𝑛+1]

⊢ [𝑃0]while𝑀 [𝑞] = 1 do 𝑆 od[ok :∨𝑁
𝑖=0

supp(𝑀0𝑃𝑖𝑀
†
0
)]

Fig. 7. Useful derived rules.

We list several other derived rules in Fig. 7. The If rule combined with the Skip and Error

rules derive the proof rule for the assert statement. We also use the Disjunction rule to derive

new practical rules for if and while statements, which merge the reasoning results of multiple

branches. Note that in the Derived While rule, we made the bound 𝑁 for 𝑛 explicitly for finite

loop unrolling. It can be derived fromWhile1 rule by letting 𝑃𝑛 = 0 for 𝑛 ≥ 𝑁 . Our logic is both

sound and complete, as formulated by the following theorem.

Theorem 6.1. [Soundness & Completeness] For any program 𝑆 , exit condition 𝜖 , projections 𝑃

and 𝑄 , we have,

⊢ [𝑃]𝑆 [𝜖 :𝑄] ⇔ ⊨ [𝑃]𝑆 [𝜖 :𝑄]

Automating the inference with finite loop unrolling. Although onemay use theDerivedWhile rule

and a fixed bound 𝑁 to make the reasoning sound and terminate within finite steps (loop unrolling),

such a bound usually means dropping information and making the reasoning incomplete. Stronger

reasoning like theWhile1 rule is needed in general. However, it is unclear how to automatically

infer a backward variant {𝑃𝑛} even for finite-dimensional quantum systems because the state space

and possible projections are uncountably infinite.

Instead of inferring 𝑃𝑛 , we find the post predicate in the Derived While does not change when

𝑁 is large enough. We prove a stronger completeness result which indicates finite loop unrolling is

sufficient for complete reasoning.

18 Peng Yan, Hanru Jiang, and Nengkun Yu

Theorem 6.2 (Completeness with bounded While rules). Replacing the While1 and While2

rule with the following bounded While rules results in another sound and complete proof system.

Bounded While1

∀𝑛 < dim(H) . ⊢ [supp(𝑀1𝑃𝑛𝑀
†
1
)]𝑆 [ok :𝑃𝑛+1]

𝑁 ≤ dim(H)

⊢ [𝑃0]while𝑀 [𝑞] = 1 do 𝑆 od[ok : supp(𝑀0𝑃𝑁𝑀
†
0
)]

Bounded While2

∀𝑛 < dim(H). ⊢ [supp(𝑀1𝑃𝑛𝑀
†
1
)]𝑆 [ok :𝑃𝑛+1]

𝑁 ≤ dim(H) ⊢ [supp(𝑀1𝑃𝑁𝑀
†
1
)]𝑆 [er :𝑄]

⊢ [𝑃0]while𝑀 [𝑞] = 1 do 𝑆 od[er :𝑄]

Here dim(H) is the dimension of the state space of the quantum system.

The intuition is that the rank of ∨𝑖<𝑁𝑃𝑖 is bounded by dim(H), and once ∨𝑖≤𝑁−1𝑃𝑖 = ∨𝑖≤𝑁𝑃𝑖 ,
the sequence stops increasing, thus must converge before 𝑁 reaches dim(H) + 1. The theorem

indicates that our logic is decidable and has an upper bound for the time complexity of inference.

The upper bound is only relevant to the dimension of the quantum system and the number of nested

while-loops. In practice, the dimension dim(H) can still be impractically large (e.g., for an 𝑛-qubit

system, dim(H) = 2
𝑛
), in which case we need to balance between efficiency and completeness by

employingWhile rules with a smaller bound.

Just like the classical incorrectness logic, our logic system avoids false positives by definition,

that is, the post-condition is achievable. Theorem 6.2 further shows that our proof system does

not miss erroneous states regulated by projections. However, due to the limited expressiveness

of projections, our proof system does miss erroneous states violating quantitative properties that

cannot be captured by projections, i.e., when correct and erroneous states share the same support.

For example, mixed states 0.2 |0⟩⟨0| + 0.8 |1⟩⟨1| and 0.5 |0⟩⟨0| + 0.5 |1⟩⟨1| are indistinguishable with
respect to any projection.

7 REASONING USING THE LOGIC
This section demonstrates how to reason about the quantum program using our logic by three

examples. We first show and compare the reasoning of Grover’s algorithm with aQHL and QIL.

Then we reason about quantum teleportation and a repeat-until-success program where two types

of bugs were inserted respectively, according to Huang et al. [Huang and Martonosi 2019b], and

show how the assert statement combined with our proof system captures the bugs statically.

7.1 Grover’s Algorithm
Grover’s algorithm [Grover 1996] searches and finds the unique input to a black box function that

produces a particular output value and provides quadratic speedup over its classical counterparts.

The implementation and corresponding proof sketch are listed in Fig. 8, where we put the aQHL

and QIL predicates together to show their connection.

Suppose we hope to find one of the 𝑀 solutions {𝑠1, . . . , 𝑠𝑀 } of equation 𝑓 (𝑥) = 1 from the

domain of size 𝑁 = 2
𝑑
, where 𝑓 : {0, 1}𝑑 → {0, 1}. The Grover’s algorithm prepares a uniform

superposition
1√
2
𝑑

∑
𝑥 ∈{0,1}𝑑 |𝑥⟩ on the 𝑑 qubits 𝑞 (line 1), performs the “Grover iteration” for 𝑅

times (line 2-8) before measuring the qubits 𝑞 (line 9), and guarantees the resulting state in 𝑞

encodes a solution for a high probability. The Grover iteration contains an oracle𝑈𝜔 that acts as

𝑈𝜔 |𝑥⟩ = (−1) 𝑓 (𝑥) |𝑥⟩, and a conditional phase shift operator 𝑃ℎ that acts as 𝑃ℎ |𝑥⟩ = −(−1)𝑥=0 |𝑥⟩.
The quantum register 𝑟 is a counter for the while-loop, every time at the end of the loop body it is

increased using the operator𝑈+ that acts as 𝑈+ |𝑛⟩ = |𝑛 + 1 mod 2
|𝑟 |⟩. Finally, line 10 tests if the

output state in 𝑞 is a solution.

On Incorrectness Logic for Quantum Programs 19

[|0⟩𝑞 ⟨0| ⊗ |0⟩𝑟 ⟨0|] {|0⟩𝑞 ⟨0| ⊗ |0⟩𝑟 ⟨0|}
1 : 𝑞 := 𝐻 ⊗𝑑𝑞;

[ok :𝑃0 ⊗ |0⟩𝑟 ⟨0|] {𝑃0 ⊗ |0⟩𝑟 ⟨0|}
2 : while𝑀 [𝑟] = 1 do

[ok :𝑃𝑛 ⊗ |𝑛⟩𝑟 ⟨𝑛 |] {∑𝑅−1

𝑛=0
(𝑃𝑛 ⊗ |𝑛⟩𝑟 ⟨𝑛 |)}

3 : 𝑞 := 𝑈𝜔𝑞;

4 : 𝑞 := 𝐻 ⊗𝑑𝑞;

5 : 𝑞 := 𝑃ℎ𝑞;

6 : 𝑞 := 𝐻 ⊗𝑑𝑞;

[ok :𝑃𝑛+1 ⊗ |𝑛⟩𝑟 ⟨𝑛 |] {∑𝑅−1

𝑛=0
(𝑃𝑛+1 ⊗ |𝑛⟩𝑟 ⟨𝑛 |)}

7 : 𝑟 := 𝑈+𝑟 ;

[ok :𝑃𝑛+1 ⊗ |𝑛 + 1⟩𝑟 ⟨𝑛 + 1|] {∑𝑅
𝑛=0

(𝑃𝑛 ⊗ |𝑛⟩𝑟 ⟨𝑛 |)}
8 : od;

[ok :𝑃𝑅 ⊗ |𝑅⟩𝑟 ⟨𝑅 |] {𝑃𝑅 ⊗ |𝑅⟩𝑟 ⟨𝑅 |}
9 : if (□𝑚 · 𝑁 [𝑞] =𝑚 → skip) fi;

[ok :

∑
𝑖 |𝑠𝑖 ⟩𝑞 ⟨𝑠𝑖 | ⊗ |𝑅⟩𝑟 ⟨𝑅 |] {∑𝑖 |𝑠𝑖 ⟩𝑞 ⟨𝑠𝑖 | ⊗ |𝑅⟩𝑟 ⟨𝑅 |}

10 : assert(𝑞,∑𝑖 |𝑠𝑖 ⟩𝑞 ⟨𝑠𝑖 |);
[ok :

∑
𝑖 |𝑠𝑖 ⟩𝑞 ⟨𝑠𝑖 | ⊗ |𝑅⟩𝑟 ⟨𝑅 |] [er :0]

𝑃0 = |𝜓 ⟩⟨𝜓 | |𝜓 ⟩ = 1√
2
𝑑

∑
𝑥 ∈{0,1}𝑑 |𝑥⟩

𝑃𝑛 = 𝐺𝑛𝑃0𝐺
𝑛† 𝐺 = (2 |𝜓 ⟩⟨𝜓 | − 𝐼)𝑈𝜔

𝑀 = {𝑀0, 𝑀1} 𝑀0 = |𝑅⟩𝑟 ⟨𝑅 | , 𝑀1 = 𝑀⊥
0

𝑁 = {𝑁𝑚 | 𝑚 ∈ {0, 1}𝑑 } 𝑁𝑚 = |𝑚⟩⟨𝑚 |

Fig. 8. Program implementing the Grover’s algorithm.

To make it easier to understand how to insert assertions in the loop body in Fig. 8, it would be

better to give a more intuitive explanation for Grover iteration from a geometric point view. We

define two special state |𝛼⟩ and |𝛽⟩

|𝛼⟩ = 1

√
𝑁 −𝑀

∑︁
𝑥𝑡

|𝑥𝑡 ⟩ |𝛽⟩ = 1

√
𝑀

∑︁
𝑥𝑠

|𝑥𝑠⟩

where

∑
𝑥𝑠

(

∑
𝑥𝑡
) indicates a sum over all states |𝑥⟩ which are (not) solutions to the search problems.

Let the initial state be |0⟩⊗𝑑 and we have the equal superposition state |𝜓 ⟩ before entering the

while loop:

|𝜓 ⟩ = 1

√
𝑁

𝑁−1∑︁
𝑥=0

|𝑥⟩ =
√︂

𝑁 −𝑀

𝑁
|𝛼⟩ +

√︂
𝑀

𝑁
|𝛽⟩

The whole of line 3-6 performs the Grover operator𝐺 = 𝐻 ⊗𝑑𝑃ℎ𝐻 ⊗𝑑𝑈𝜔 = (2 |𝜓 ⟩⟨𝜓 | − 𝐼)𝑈𝜔 on state

|𝜓 ⟩ = cos (\/2) |𝛼⟩ + sin (\/2) |𝛽⟩

𝐺 |𝜓 ⟩ = cos

3\

2

|𝛼⟩ + sin

3\

2

|𝛽⟩ (cos\/2 =
√︁
(𝑁 −𝑀)/𝑁)

which turns out to be a rotation of \ radians on the vector |𝜓 ⟩ in the 2-dimensional subspace

|𝛼⟩⟨𝛼 | + |𝛽⟩⟨𝛽 | spanned by |𝛼⟩ and |𝛽⟩. Generally, we can make the algorithm succeed with a high

probability, i.e., to make the rotation end up with a position that is as close to the solution |𝛽⟩ as
possible. The number of the Grover iterations is upper-bounded by 𝑅 = 𝑂 (

√︁
𝑁 /𝑀).

In Fig. 8, we choose𝑀 , 𝑁 , 𝑅 appropriately such that the program succeeds with probability 1.

We insert predicates before or after a line of code and obtain the proof sketches. Predicates in [−]

20 Peng Yan, Hanru Jiang, and Nengkun Yu

are for QIL, and predicates in {−} are for aQHL. It is not surprising to find the proof sketches for

QIL and aQHL being mostly identical, since the proof sketches always use the largest/strongest

post-conditions, and the two proof systems are connected by post(⟦𝑆⟧𝜖). The difference lies in
the while-loop: while QIL concerns about every single execution of the loop body using the loop

variant 𝑃𝑛 ⊗ |𝑛⟩𝑟 ⟨𝑛 |, aQHL merges the reasoning of these executions using a loop invariant which

is essentially the disjunction of the loop variants.

For general cases where the choice of𝑀 and 𝑁 does not guarantee success with the probability

being 1, we may instead insert an assertion assert(𝑞, |𝛼⟩⟨𝛼 | + |𝛽⟩⟨𝛽 |) at the end of the loop body.

Using this assertion, we would miss erroneous implements such as a wrong loop guard 𝑅′
that

has no effect on the subspace |𝛼⟩⟨𝛼 | + |𝛽⟩⟨𝛽 |. 9 But we can still capture any kind of errors that

makes state 𝐺𝑖 |𝜓 ⟩ (0 ≤ 𝑖 ≤ 𝑅) end up not lying in the subspace |𝛼⟩⟨𝛼 | + |𝛽⟩⟨𝛽 |, e.g., an erroneous

implementation of 𝑃ℎ.

7.2 Quantum Teleportation

𝑞0 |𝜓 ⟩ • 𝐻

𝑞1

𝑞2

𝛽00

 𝑋 𝑍 |𝜓 ⟩

Fig. 9. Circuit for teleportation.

Quantum teleportation is a technique that transports quantum

states through classical communication. As shown in the Fig. 9,

when a Bell state 𝛽00 is shared between qubits 𝑞1 and 𝑞2, to

teleport the state of 𝑞0 to 𝑞2 we may apply 𝐻 gate on 𝑞0 and

measure 𝑞0 and 𝑞1 with 𝑀 = {|0⟩⟨0| , |1⟩⟨1|}, then apply 𝑋

or 𝑍 gate to 𝑞2 if the measurement outcome of 𝑞0 or 𝑞1 is 1,

respectively. The output state of 𝑞2 will always be the same as

the input state of 𝑞0 for all possible measurement outcomes.

Thus, two parties sharing a Bell state may teleport the state of 𝑞0 to 𝑞2 via communicating with

measurement outcomes in a classical channel.

Figure. 10a shows the corresponding program of quantum teleportation circuit and its proof

sketch, where we add an assertion at the end to check whether the quantum state of 𝑞0 (described by

projection 𝑅) is teleported to 𝑞2. If we mismatch the controlled gates on the qubit 𝑞2 in lines 3 and 4,

as shown in the Figure. 10b, we introduce a bug of type “incorrect operations” according to [Huang

and Martonosi 2019b]. The correct and erroneous programs can be easily reasoned about with

the proof sketch and our proof rules, where the non-zero post of the erroneous program provides

evidence of a bug. Note that after lines 3 and 4, we merge the result predicates of if branches using
the Disjunction rule, thus avoid reasoning about exponentially many execution paths.

7.3 The RUS Example

𝑞0 : |0⟩ 𝐻 𝑇 • 𝐻 • 𝑇 𝐻

𝑞1 : |𝜓 ⟩ 𝑉 |𝜓 ⟩

Fig. 11. An RUS circuit implementing𝑉 =
𝐼+𝑖

√
2𝑋√

3

.

We take a simple program implementing a repeat-

until-success [Bocharov et al. 2015; Paetznick and

Svore 2014] (RUS) algorithm as another example.

RUS algorithms offer exact, fault-tolerant imple-

mentations of a large set of single-qubit unitary

gates that can be used to improve upon the ap-

proximate decomposition of single-qubit unitaries

significantly. Implementing the algorithm requires wrapping RUS circuits into while-loops, which

can be easily erroneous.

Fig. 11 is the smallest circuit for the loop body found in [Paetznick and Svore 2014] that imple-

ments non-Clifford single-qubit unitaries. The qubit 𝑞0 is the auxiliary qubit, and 𝑞1 is the target

qubit. Besides 𝐻 and CNOT gates, there is another basic unitary gate 𝑇 = cos (𝜋/8)𝐼 − 𝑖 sin (𝜋/8)𝑍

9
A bad 𝑅 would reduce the success rate of Grover’s algorithm.

On Incorrectness Logic for Quantum Programs 21

[𝑅 ⊗ 𝛽00𝛽
†
00
]

1 : (𝑞0, 𝑞1) := CNOT(𝑞0, 𝑞1);
2 : 𝑞0 := 𝐻𝑞0;

[ok : |𝜑⟩⟨𝜑 |]
3 : if (𝑀 [𝑞1] = 1 → 𝑞2 := 𝑋𝑞2) fi;

[ok :𝑄1 ∨𝑄2]
4 : if (𝑀 [𝑞0] = 1 → 𝑞2 := 𝑍𝑞2) fi;

[ok : 𝐼 ⊗ 𝑅]
5 : assert(𝑞2, 𝑅)

[er :0]

(a) Correct program

[𝑅 ⊗ 𝛽00𝛽
†
00
]

1 : (𝑞0, 𝑞1) := CNOT(𝑞0, 𝑞1);
2 : 𝑞0 := 𝐻𝑞0;

[ok : |𝜑⟩⟨𝜑 |]
3 : if (𝑀 [𝑞1] = 1 → 𝑞2 := 𝑍𝑞2) fi;

[ok :𝑄1 ∨𝑄3]
4 : if (𝑀 [𝑞0] = 1 → 𝑞2 := 𝑋𝑞2) fi;

[ok :𝑃= ⊗ 𝑅 + 𝑃⊥= ⊗ 𝑋𝑍𝑅𝑍𝑋]
5 : assert(𝑞2, 𝑅)

[er :𝑃⊥= ⊗ supp(𝑅⊥𝑋𝑍𝑅𝑍𝑋𝑅⊥)]

(b) Erroneous program

𝑀 = {𝑀0, 𝑀1} = {|0⟩⟨0| , |1⟩⟨1|} 𝑃= = |00⟩⟨00| + |11⟩⟨11|
|𝜑⟩ = |00⟩ |𝜓 ⟩ + |01⟩𝑋 |𝜓 ⟩ + |10⟩ 𝑍 |𝜓 ⟩ + |11⟩𝑋𝑍 |𝜓 ⟩
𝑄1 = |00⟩⟨00| ⊗ 𝑅 + |00⟩⟨10| ⊗ 𝑅𝑍 + |10⟩⟨00| ⊗ 𝑍𝑅 + |10⟩⟨10| ⊗ 𝑍𝑅𝑍

𝑄2 = |01⟩⟨01| ⊗ 𝑅 + |01⟩⟨11| ⊗ 𝑅𝑍 + |11⟩⟨01| ⊗ 𝑍𝑅 + |11⟩⟨11| ⊗ 𝑍𝑅𝑍

𝑄3 = |01⟩⟨01| ⊗ 𝑋𝑍𝑅𝑍𝑋 + |01⟩⟨11| ⊗ 𝑋𝑍𝑅𝑋 + |11⟩⟨01| ⊗ 𝑋𝑅𝑍𝑋 + |11⟩⟨11| ⊗ 𝑋𝑅𝑋

Fig. 10. Reasoning the quantum teleportation program.

used in the circuit. The circuit aims to apply a unitary operator 𝑉 = (𝐼 + 𝑖
√

2𝑋)/
√

3 on the target

qubit. The desired operation will have been achieved when the measurement on the auxiliary qubit

𝑞0 returns 0. When that happens, we can exit the program and return the result. Otherwise, we

would have to rerun the circuit. To rerun the circuit based on the measurement result, we wrap

the circuit into a while-loop. Note that the auxiliary qubit serves as the control qubit of the loop

body and the auxiliary qubit for the RUS circuit at the same time. To make sure the program enters

the while-loop body, it needs to set the auxiliary qubit to |1⟩ at the beginning using an 𝑋 gate and

restore to |0⟩ by an 𝑋 gate again before executing the circuit.

Fig. 12a,12b is the correct and erroneous implementations of the RUS procedure corresponding

to Fig. 12 along with the proof sketch, respectively. Assume 𝑞1 is of the state 𝑅 = |𝜓 ⟩⟨𝜓 | at the
beginning, we add an assertion at line 11 to check whether the program implements the unitary

gate 𝑉 on 𝑞1. The erroneous implementation contains a mistake at line 2: forgetting to restore the

auxiliary qubit 𝑞0 before entering the RUS circuit (line 3-9). The seemingly artificial implementation

error corresponds to a bug type “incorrect quantum initial values" as reported in [Huang and

Martonosi 2019b]: the initial value of the auxiliary qubit 𝑞0 should be |0⟩ instead of |1⟩ before
executing line 3-9, the RUS circuit.

We briefly describe how to reason about the erroneous program with our logic. Let the presump-

tion of this erroneous program be |0⟩⟨0| ⊗ 𝑅 for projection 𝑅 = |𝜓 ⟩⟨𝜓 |, we have [ok : |1⟩⟨1| ⊗ 𝑅] by
the Unitary rule after line 0 before the while-loop. To apply theWhile1 rule, it suffices to find a

series of 𝑃𝑛 such that

𝑃0 = |1⟩⟨1| ⊗ 𝑅 ∧ ⊢ [supp(𝑀1𝑃𝑛𝑀
†
1
)]𝑆3−9 [ok :𝑃𝑛+1]

where 𝑆3−9 is the erroneous loop body from line 3 to line 9. Since the 𝑆3−9 is a sequence of unitary

statements, by rule Seq1 and Unitary, we have

⊢ [|1⟩⟨1| ⊗ 𝑄]𝑆3−9 [ok :𝑊 (|1⟩⟨1| ⊗ 𝑄)𝑊 †]
for an arbitrary projection𝑄 , where𝑊 = 1

2
(𝑋 ⊗ 𝐼 − 𝑖

√
3𝐼 ⊗𝑉 †). After a little bit more calculating we

have a non-trivial series of 𝑃𝑛 and𝑄𝑛 , as shown at the bottom of Fig. 12, such that supp(𝑀1𝑃𝑛𝑀
†
1
) =

22 Peng Yan, Hanru Jiang, and Nengkun Yu

[|0⟩⟨0| ⊗ 𝑅]
0 : 𝑞0 := 𝑋𝑞0;

[ok : |1⟩⟨1| ⊗ 𝑅]
1 : while𝑀 [𝑞0] = 1 do

[ok : |1⟩⟨1| ⊗ 𝑅]
2 : 𝑞0 := 𝑋𝑞0;

[ok : |0⟩⟨0| ⊗ 𝑅]
3 : 𝑞0 := 𝐻𝑞0;

4 : 𝑞0 := 𝑇𝑞0;

5 : (𝑞0, 𝑞1) := CNOT(𝑞0, 𝑞1);
6 : 𝑞0 := 𝐻𝑞0;

7 : (𝑞0, 𝑞1) := CNOT(𝑞0, 𝑞1);
8 : 𝑞0 := 𝑇𝑞0;

9 : 𝑞0 := 𝐻𝑞0

[ok :𝑈 (|0⟩⟨0| ⊗ 𝑅)𝑈 †]
10 : od;

[ok : |0⟩⟨0| ⊗ 𝑉𝑅𝑉 †]
11 : assert(𝑞1,𝑉𝑅𝑉

†)
[er :0]

(a) RUS program

[|0⟩⟨0| ⊗ 𝑅]
0 : 𝑞0 := 𝑋𝑞0;

[ok : |1⟩⟨1| ⊗ 𝑅]
1 : while𝑀 [𝑞0] = 1 do

[ok : |1⟩⟨1| ⊗ 𝑄𝑛]
2 : 𝑞0 := 𝑋𝑞0;

[ok : |1⟩⟨1| ⊗ 𝑄𝑛]
3 : 𝑞0 := 𝐻𝑞0;

4 : 𝑞0 := 𝑇𝑞0;

5 : (𝑞0, 𝑞1) := CNOT(𝑞0, 𝑞1);
6 : 𝑞0 := 𝐻𝑞0;

7 : (𝑞0, 𝑞1) := CNOT(𝑞0, 𝑞1);
8 : 𝑞0 := 𝑇𝑞0;

9 : 𝑞0 := 𝐻𝑞0

[ok :𝑃𝑛+1]
10 : od;

[ok : |0⟩⟨0| ⊗ 𝑄𝑁]
11 : assert(𝑞1,𝑉𝑅𝑉

†)
[er : |0⟩⟨0| ⊗ (𝐼 −𝑉𝑅𝑉 †)𝑄𝑁 (𝐼 −𝑉𝑅𝑉 †)]

(b) Erroneous program

𝑀 = {𝑀0, 𝑀1} , where𝑀0 = |0⟩⟨0| , 𝑀1 = |1⟩⟨1| 𝑉 = (𝐼 + 𝑖
√

2𝑋)/
√

3

𝑈 = (𝑋 ⊗ 𝐼 − 𝑖
√

3𝐼 ⊗ 𝑉)/2 𝑊 = (𝑋 ⊗ 𝐼 − 𝑖
√

3𝐼 ⊗ 𝑉 †)/2

𝑄𝑛 = 𝑉 †𝑛𝑅𝑉𝑛 𝑃0 = |1⟩⟨1| ⊗ 𝑅 𝑃𝑛+1 =𝑊 (|1⟩⟨1| ⊗ 𝑄𝑛)𝑊 †

Fig. 12. Reasoning an RUS program.

|1⟩⟨1| ⊗ 𝑄𝑛 and 𝑃𝑛+1 =𝑊 (|1⟩⟨1| ⊗ 𝑄𝑛)𝑊 †
. It implies that the premise of the While1 rule holds

for 𝑃𝑛 . Finally, by the derived assert rule, we have the result after line 11. Evidence of bug can be

obtained by, e.g., choosing 𝑁 = 2 and 𝑅 = |0⟩⟨0| such that the result predicate is not 0.
In our experiments using the static analyzer, we found the bound 𝑁 = dim(H) are merely

reached when applying the bounded while-rule. With RUS circuits consisting of more than four

qubits, the post predicate of the while loop converges after at most two unrolling steps when

random Pauli-operations are inserted into the loop body. One may notice that inserting assertions

in the while loop would be more effective in finding bugs. For example, adding assert(𝑞0, |0⟩⟨0|)
after line 2 would immediately capture the bug in Fig. 12b with postcondition [er : |1⟩⟨1| ⊗ 𝑄0],
indicating an incorrect initial value of the RUS circuit.

8 DISCUSSION ON ALTERNATIVE VALIDITY FORMULATIONS
In this section, we discuss other possible characterization of errors and validity formulations that

we have come up with during the development of QIL, from which we found the Def. 5.2 is the best

in expressiveness and efficiency. We use different subscripts of ⊨· to distinguish between different

definitions of validity. All these triples are only discussed in this section to avoid confusion, readers

not interested in alternative validities may safely skip this section.

8.1 A Naive Generalization of IL Validity Formulation
We start with the following naive formulation.

On Incorrectness Logic for Quantum Programs 23

Definition 8.1 (Classical validity). A triple is classically valid, denoted by ⊨𝑐 [𝑃]𝑆 [𝜖 :𝑄], if
∀𝜌 ′ ⊨ 𝑄. ∃𝜌 ⊨ 𝑃 . 𝜌 ′ ∈ ⟦𝑆⟧𝜖𝜌.

This validity formulation is called “classical” because it is a naive generalization of O’Hearn’s

incorrectness triple (1), by simply replacing classical states, predicates, and satisfaction with their

quantum counterparts. It says that every state 𝜌 ′
satisfying the projection 𝑃 is reachable from some

state 𝜌 in the projection 𝑄 .

Requiring every 𝜌 ′ ⊨ 𝑄 being reached is rather restrictive and makes the classical validity too

strong to have meaningful triples for initialization statements. For example, starting from a Bell state

𝛽00 = (|00⟩ + |11⟩)/
√

2, initializing one qubit with 𝑞0 ≔ |0⟩ obtains a mixed state |0⟩⟨0| ⊗ 1

2
𝐼 . Let the

presumption 𝑃 = 𝛽00𝛽
†
00
, the only classically valid triple we can have is a trivial [𝑃]𝑞0 ≔ |0⟩ [𝜖 :0]

because any non-trivial postcondition 𝑄 can be satisfied by some unreachable pure state.

8.2 A Weak Validity Based on Observable Relation
The second validity formulation is based on the observable relation, a dual of satisfaction relation

for characterizing erroneous states.

Definition 8.2 (Observable relation). Given a quantum state 𝜌 ∈ D− (H), a unit vector |𝜓 ⟩ is
observable within 𝜌 , denoted by 𝜌 ≻ |𝜓 ⟩, if ⟨𝜓 |𝜌 |𝜓 ⟩ > 0. A quantum predicate 𝑃 is observable within

𝜌 , denoted by 𝜌 ≻ 𝑃 , if Tr(𝑃𝜌) > 0.

Equivalently, 𝜌 ≻ 𝑃 if there is some |𝜓 ⟩ ∈ 𝑃 such that ⟨𝜓 |𝜌 |𝜓 ⟩ > 0. It means it is possible to

observe some |𝜓 ⟩ ∈ 𝑃 in the following sense: when measuring the state 𝜌 with the measurement

𝑀 = {|𝜓 ⟩⟨𝜓 | , 𝐼 − |𝜓 ⟩⟨𝜓 |}, we are able to obtain |𝜓 ⟩⟨𝜓 | with a non-zero probability ⟨𝜓 |𝜌 |𝜓 ⟩. The
observable relation is dual to the satisfaction relation:

𝜌 ⊭ 𝑃 ⇔ 𝜌 ≻ ¬𝑃 . (3)

The equation (3) is a generalization of its classical counterpart (2) by observing

𝜎 ⊨ ¬𝑝 iff Tr((¬𝑝)𝜎) > 0,

where the set ¬𝑝 is interpreted as to its corresponding boolean-valued characterization function,

for unit vectors, the observable relation 𝜌 ≻ |𝜓 ⟩ degenerates to equality if we replace 𝜌 and |𝜓 ⟩
with classical states.

The relation between observable relation and under-approximation is stated in Lemma 8.1.

Lemma 8.1 (Relation between observable and under-approximation). For any projection 𝑃

and quantum state 𝜌 ∈ D− (H), we have
𝜌 ⊨𝑃 =⇒ ∀ |𝜓 ⟩ ∈ 𝑃 . 𝜌 ≻ |𝜓 ⟩ and 𝜌 ≻ 𝑃 =⇒ ∃𝑃 ′. 𝜌 ⊨𝑃 ′ ∧ Tr(𝑃𝑃 ′) > 0

On top of the observable relation, we give another generalization of the classical incorrectness

triple that is better than Def. 8.1.

Definition 8.3 (Weak validity). A QIL triple is weakly valid, denoted by ⊨𝑤 [𝑃]𝑆 [𝜖 :𝑄], if

∀ |𝜓 ′⟩ ∈ 𝑄. ∃ |𝜓 ⟩ ∈ 𝑃, 𝜌 ′ ≻ |𝜓 ′⟩ . ⟨𝑆, |𝜓 ⟩⟨𝜓 |⟩ 𝜖−→
∗
⟨↓, 𝜌 ′⟩.

The formula ⊨𝑤 [𝑃]𝑆 [𝜖 :𝑄] means every |𝜓 ′⟩ ∈ 𝑄 is observable from some reachable state 𝜌 ′
that

comes from some pure state |𝜓 ⟩ ∈ 𝑃 . One nice thing about this validity is that it may degenerate

to classical settings. Recall that the classical states correspond to the computational basis of a

Hilbert space. When |𝜓 ′⟩ and 𝜌 ′
are restricted to classical states, the observable relation 𝜌 ′ ≻ |𝜓 ′⟩

degenerates into equality 𝜌 ′ = |𝜓 ′⟩⟨𝜓 ′ |, and this validity degenerates to that of IL triples.

The connection between strong and weak validities is characterized by Lemma 8.2.

24 Peng Yan, Hanru Jiang, and Nengkun Yu

Lemma 8.2 (Connection between weak and strong validities). For any quantum program 𝑆 ,

projections 𝑃 , 𝑄 and exit condition 𝜖 ,

⊨ [𝑃]𝑆 [𝜖 :𝑄] =⇒ ⊨𝑤 [𝑃]𝑆 [𝜖 :𝑄] .
Conversely, given 𝑃 and 𝑆 , we have

(∃𝑄 ≠ 0. ⊨𝑤 [𝑃]𝑆 [𝜖 :𝑄]) =⇒ (∃𝑄 ′ ≠ 0. ⊨ [𝑃]𝑆 [𝜖 :𝑄 ′] ∧ Tr(𝑄𝑄 ′) > 0) .

This lemma implies that when we can observe an er/ok exit condition with the weak validity, we

can find a more proper non-trivial post predicate that satisfies the strong validity. It means if we

only care about whether an er would occur, the weak validity and strong validity are equivalent, so

we call Lemma 8.2 a weak equivalence between the strong and weak validities.

The main drawback of this validity formulation is that it is too weak to reject useless triples. Recall

the program 𝑆Bell in Fig. 1a, the weak validity accept [|00⟩⟨00|]𝑆Bell [ok : span{(𝛼 |00⟩ + 𝛽 |11⟩)}] for
any 𝛼2 + 𝛽2 = 1, which is not informative. This validity formulation is weak because the observable

relation is strictly weaker than the under-approximation relation, and 𝜌 ≻ 𝑃 is not accurate enough

if 𝑃 has elements out of supp(𝜌), i.e., 𝑃 ⊈ supp(𝜌).

8.3 A Strict Validity Based on Under-approximation
Based on the under-approximation relation, we obtain another validity formulation weaker than

the classical validity and stronger than the weak validity.

Definition 8.4 (Strict validity). A triple is strictly valid, denoted by ⊨𝑠 [𝑃]𝑆 [𝜖 :𝑄], if
∀𝜌 ⊨𝑃 . ∃𝜌 ′. 𝜌 ′ ∈ ⟦𝑆⟧𝜖𝜌 ∧ 𝜌 ′ ⊨𝑄

The meaning of this validity is straightforward: for any 𝜌 under-approximated by 𝑃 , there exits

an execution path of 𝑆 starting from 𝜌 and terminating in 𝜌 ′
with exit condition 𝜖 such that 𝑄

under-approximates 𝜌 ′
. In other words, it says if a state is under-approximated by 𝑃 , then there is

a reachable state under-approximated by 𝑄 .

With the strict validity, we can give meaningful triples for initialization statements that classical

validity can not handle and avoid accepting useless, weakly valid triples. For example, we have ⊨𝑠
[𝛽00𝛽

†
00
]𝑞0 ≔ |0⟩ [ok : |0⟩⟨0| 𝐼 ⊗ 𝐼] for the initialization on a Bell state 𝛽00. For 𝑆Bell, we have only two

non-trivial meaningful triples ⊨𝑠 [|00⟩⟨00|]𝑆Bell [ok : |00⟩⟨00|] and ⊨𝑠 [|00⟩⟨00|]𝑆Bell [ok : |11⟩⟨11|]
for the program 𝑆Bell in Fig. 1a.

The main drawback of the strict validity is too restrictive to preserve the disjunction rule below,

thus being not efficiently reasoned about.

[𝑃]𝑆 [𝜖 :𝑄1] [𝑃]𝑆 [𝜖 :𝑄2]
[𝑃]𝑆 [𝜖 :𝑄1 ∨𝑄2] .

A simple counter example would be letting 𝑃 = 1

2
(|0⟩ + |1⟩)(|0⟩ + |1⟩)† and 𝑆 being the program

if (𝑀 [𝑞]) = true → skip □ false → skip) fi. We have two strictly valid triples [𝑃]𝑆 [ok : |0⟩⟨0|]
and [𝑃]𝑆 [ok : |1⟩⟨1|] for this example. The disjunction of postconditions |0⟩⟨0| and |1⟩⟨1| is 𝐼 , and a
state 𝜌 ′ ⊨𝐼 must be a mixed state, which is impossible to reach via a single execution path starting

with the input state 𝑃 (also a density matrix). For the same season, the classical validity does not

have the disjunction either.

The disjunction rule is crucial for efficient incorrectness reasoning. Without the disjunction rule,

one will have to remember the post predicates of all paths when reasoning about a program or

information about some paths. Since the number of paths grows exponentially with increasing

sequenced if statements, the disjunction rule is highly desirable to make the reasoning efficient

and thorough (covering as many paths as possible). As we have seen in Sec. 6, the strong validity

in Def. 5.2 supports the disjunction rule, thus is more efficient compared with other triples.

On Incorrectness Logic for Quantum Programs 25

At the end of this section, we characterize the relationship between these validity formulations

in the observation below, where ⊨ [𝑃]𝑆 [𝜖 :𝑄] and ⊨𝑤 [𝑃]𝑆 [𝜖 :𝑄] are strictly weaker than the others,

thus the most expressive.

Observation 8.1. For arbitrary program 𝑆 , we have

⊨𝑐 [𝑃]𝑆 [𝜖 :𝑄] ⇒ ⊨𝑠 [𝑃]𝑆 [𝜖 :𝑄] ⇒ ⊨ [𝑃]𝑆 [𝜖 :𝑄] ≈ ⊨𝑤 [𝑃]𝑆 [𝜖 :𝑄],

where ≈ means the weak equivalence described by Lemma 8.2. In particular, if 𝑆 does not contain

initialization statements 𝑞 ≔ |0⟩, we have

⊨𝑐 [𝑃]𝑆 [𝜖 :𝑄] ⇔ ⊨𝑠 [𝑃]𝑆 [𝜖 :𝑄],

but these two validities are still strictly stronger than ⊨ [𝑃]𝑆 [𝜖 :𝑄].

9 RELATEDWORKS
With the rapid progress of quantum hardware, significant efforts are devoted to the research of

quantum programming languages [Abhari et al. 2012; Aleksandrowicz et al. 2019; Developers 2021;

Green et al. 2013; Smith et al. 2016; Svore et al. 2018], quantum program logic [Barthe et al. 2019;

Hung et al. 2019; Kakutani 2009; Ying 2012, 2016; Ying et al. 2009; Yu 2019; Yu and Ying 2012],

quantum program verification [Paykin et al. 2017; Rand et al. 2018; Yu and Palsberg 2021] and

debugging [Huang and Martonosi 2019b; Li et al. 2020; Li and Ying 2014]. We discuss two lines of

research that are directly related to our work, namely the projection-based quantum program logic

and incorrectness logic.

Projection based quantum program logic. Recently, projections were used as predicates to develop

quantum Hoare logic for reasoning about the correctness of quantum programs in [Zhou et al.

2019], and quantum relational Hoare logics (qRHL) for reasoning about equivalence between two

quantum programs [Barthe et al. 2019; Unruh 2019]. Compared with other quantum predicates

such as observables [D’hondt and Panangaden 2006], subspaces can significantly simplify the

verification of quantum programs and are much more convenient when debugging and testing.

Despite the purpose of the logic, one difference between our logic and the previous results can

be explained by quoting from [O’Hearn 2019] “Incorrectness logic uses Floyd’s forward-running

assignment axiom rather than Hoare’s backward-running one.” The underlying concepts also

differ: while correctness logics use satisfaction to rule out bugs, we use a quantum version of

under-approximation to capture bugs. Another difference lies in the reasoning of while-loops:
inference of loop variants can be automated in our logic, but it is not apparent how to infer the

loop invariants in quantum correctness logics.

Incorrectness logic and debugging quantum programs. The incorrectness logic [O’Hearn 2019] for

classical programs mainly inspires our paper. We integrate the spirit of classical incorrectness logic

of [O’Hearn 2019] and generalize to the quantum settings. This result is partly inspired by the use

of projections as assertions for testing and debugging quantum programs [Li et al. 2020]. There

are other practical debugging tools for quantum programs, such as the one employing assertions

based on statistical tests on classical observations [Huang and Martonosi 2019b]. These works are

designed for debugging at run-time, while our logic enables static analysis. In addition, our logic

is sound and complete, but few if any of the earlier works on debugging quantum programs are

accompanied by sound arguments, let alone completeness.

26 Peng Yan, Hanru Jiang, and Nengkun Yu

10 CONCLUSION AND FUTUREWORK
In this paper, we take an initial step towards an incorrectness logic for quantum programs. We

develop the incorrectness triple for quantum programs by introducing new notions of under-

approximation and reachability analysis. These notions are fundamentally different from their

classical counterparts. Built on the incorrectness triple, we propose an incorrectness logic that

proves to be sound, complete, and decidable. We also demonstrate how to use our logic for reasoning

about quantum programs by three examples–Grover search, quantum teleportation, and repeat

until success. We have already implemented a static analyzer based on our incorrectness logic and

successfully applied it to analyzing the program examples in Sec. 7. We hope our work will enrich

the future development of static analysis for quantum programs.

Assertion language for quantum predicates. Currently, we treat the predicates in our logic se-

mantically, i.e., writing matrices explicitly. It is possible to introduce an assertion language for

predicates to capture the properties of a practical subset of quantum applications to help simplify the

representation of predicates. A syntactical predicate may also expose more mathematical structures,

which may help automate the inference procedure using logic.

Supporting local reasoning. Readers may notice that the Unitary rule effectively computes the

strongest postcondition, which requires multiplicating matrices of size exponential in the number

of qubits. One possible way to avoid such full-blown quantum simulation is local reasoning. A

promising idea is to combine the recently developed quantum separation logic [Zhou et al. 2021] and

incorrectness separation logic [Raad et al. 2020] for classical programs, and determine the extent to

which local reasoning is feasible for quantum programs from the incorrect point of view. Compared

with classical separation logics, the main challenge is how to deal with the entanglement between

subsystems, which is a unique phenomenon in quantum programs. Under certain conditions, one

possibility is a frame rule below.

⊢ [𝑃]𝑆 [𝜖 :𝑄]
⊢ [𝑃 ⊗ 𝑅]𝑆 [𝜖 :𝑄 ⊗ 𝑅]

When the state is not a product state, it is not obvious if a similar frame rule exists.

Supporting quantum noise and quantum control. We do not mention the quantum noise in this

paper. It would be more practical to incorporate noise estimation such as Gleipnir [Tao et al. 2021]

and [Hung et al. 2019] into the incorrectness logic. Another limitation is that we consider quantum

programs with classical controls rather than quantum ones. The semantics for quantum controls

would be more complex and fuzzy, and we need to build a new explanation of semantics and

quantum predicates to establish any practical proof rules.

ACKNOWLEDGMENTS
We thank the anonymous referees for their suggestions and comments on earlier versions of this

paper. This work is supported by ARC Discovery Program (#DP210102449) and ARC DECRA

(#DE180100156).

On Incorrectness Logic for Quantum Programs 27

REFERENCES
Ali J Abhari, Arvin Faruque, Mohammad J Dousti, Lukas Svec, Oana Catu, Amlan Chakrabati, Chen-Fu Chiang, Seth

Vanderwilt, John Black, and Fred Chong. 2012. Scaffold: Quantum programming language. Technical Report. Princeton

Univ NJ Dept of Computer Science.

Gadi Aleksandrowicz et al. 2019. Qiskit: An Open-source Framework for Quantum Computing. https://doi.org/10.5281/

zenodo.2562111

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo,

Fernando GSL Brandao, David A Buell, et al. 2019. Quantum supremacy using a programmable superconducting

processor. Nature 574, 7779 (2019), 505–510. https://doi.org/10.1038/s41586-019-1666-5

Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou. 2019. Relational Proofs for Quantum Programs. Proc.

ACM Program. Lang. 4, POPL, Article 21 (dec 2019), 29 pages. https://doi.org/10.1145/3371089

Garrett Birkhoff and John Von Neumann. 1936. The Logic of Quantum Mechanics. Annals of Mathematics 37, 4 (1936),

823–843. http://www.jstor.org/stable/1968621

Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2018. RacerD: Compositional Static Race Detection.

Proc. ACM Program. Lang. 2, OOPSLA, Article 144 (oct 2018), 28 pages. https://doi.org/10.1145/3276514

Alex Bocharov, Martin Roetteler, and Krysta M. Svore. 2015. Efficient Synthesis of Universal Repeat-Until-Success Quantum

Circuits. Phys. Rev. Lett. 114 (Feb 2015), 080502. Issue 8. https://doi.org/10.1103/PhysRevLett.114.080502

Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, Niel de Beaudrap, Lev S. Bishop, Steven Heidel, Colm A. Ryan,

Prasahnt Sivarajah, John Smolin, Jay M. Gambetta, and Blake R. Johnson. 2021. OpenQASM 3: A Broader and Deeper

Quantum Assembly Language. ACM Transactions on Quantum Computing (dec 2021). https://doi.org/10.1145/3505636

Just Accepted.

Cirq Developers. 2021. Cirq. https://doi.org/10.5281/zenodo.5182845 See full list of authors on Github: https://github.com/

quantumlib/Cirq/graphs/contributors.

Ellie D’hondt and Prakash Panangaden. 2006. Quantum Weakest Preconditions. Mathematical. Structures in Comp. Sci. 16, 3

(jun 2006), 429–451. https://doi.org/10.1017/S0960129506005251

Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. 2019. Scaling Static Analyses at Facebook.

Commun. ACM 62, 8 (jul 2019), 62–70. https://doi.org/10.1145/3338112

Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2019. A True Positives Theorem for a Static Race Detector. Proc.

ACM Program. Lang. 3, POPL, Article 57 (jan 2019), 29 pages. https://doi.org/10.1145/3290370

Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron. 2013. Quipper: A Scalable

Quantum Programming Language. SIGPLAN Not. 48, 6 (jun 2013), 333–342. https://doi.org/10.1145/2499370.2462177

Lov K. Grover. 1996. A Fast QuantumMechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth Annual

ACM Symposium on Theory of Computing (Philadelphia, Pennsylvania, USA) (STOC ’96). Association for Computing

Machinery, New York, NY, USA, 212–219. https://doi.org/10.1145/237814.237866

Yipeng Huang and Margaret Martonosi. 2019a. QDB: From Quantum Algorithms Towards Correct Quantum Programs. In

9th Workshop on Evaluation and Usability of Programming Languages and Tools (PLATEAU 2018) (OpenAccess Series in

Informatics (OASIcs), Vol. 67), Titus Barik, Joshua Sunshine, and Sarah Chasins (Eds.). Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik, Dagstuhl, Germany, 4:1–4:14. https://doi.org/10.4230/OASIcs.PLATEAU.2018.4

Yipeng Huang and Margaret Martonosi. 2019b. Statistical Assertions for Validating Patterns and Finding Bugs in Quantum

Programs. In Proceedings of the 46th International Symposium on Computer Architecture (Phoenix, Arizona) (ISCA ’19).

Association for Computing Machinery, New York, NY, USA, 541–553. https://doi.org/10.1145/3307650.3322213

Shih-HanHung, KeshaHietala, Shaopeng Zhu,Mingsheng Ying,Michael Hicks, and XiaodiWu. 2019. Quantitative robustness

analysis of quantum programs. Proc. ACM Program. Lang. 3, POPL (2019), 31:1–31:29. https://doi.org/10.1145/3290344

Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T. Chong, and Margaret Martonosi.

2015. ScaffCC: Scalable compilation and analysis of quantum programs. Parallel Comput. 45, C (jun 2015), 2–17.

https://doi.org/10.1016/j.parco.2014.12.001

Yoshihiko Kakutani. 2009. A Logic for Formal Verification of Quantum Programs. In Proceedings of the 13th Asian Conference

on Advances in Computer Science: Information Security and Privacy (Seoul, Korea) (ASIAN’09). Springer-Verlag, Berlin,

Heidelberg, 79–93. https://doi.org/10.1007/978-3-642-10622-4_7

Gushu Li, Li Zhou, Nengkun Yu, Yufei Ding, Mingsheng Ying, and Yuan Xie. 2020. Projection-Based Runtime Assertions for

Testing and Debugging Quantum Programs. Proc. ACM Program. Lang. 4, OOPSLA, Article 150 (nov 2020), 29 pages.

https://doi.org/10.1145/3428218

Yangjia Li and Mingsheng Ying. 2014. Debugging quantum processes using monitoring measurements. Phys. Rev. A 89 (Apr

2014), 042338. Issue 4. https://doi.org/10.1103/PhysRevA.89.042338

Ji Liu, Gregory T. Byrd, and Huiyang Zhou. 2020. Quantum Circuits for Dynamic Runtime Assertions in Quantum Computation.

Association for Computing Machinery, New York, NY, USA, 1017–1030. https://doi.org/10.1145/3373376.3378488

https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1145/3371089
http://www.jstor.org/stable/1968621
https://doi.org/10.1145/3276514
https://doi.org/10.1103/PhysRevLett.114.080502
https://doi.org/10.1145/3505636
https://doi.org/10.5281/zenodo.5182845
https://doi.org/10.1017/S0960129506005251
https://doi.org/10.1145/3338112
https://doi.org/10.1145/3290370
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/237814.237866
https://doi.org/10.4230/OASIcs.PLATEAU.2018.4
https://doi.org/10.1145/3307650.3322213
https://doi.org/10.1145/3290344
https://doi.org/10.1016/j.parco.2014.12.001
https://doi.org/10.1007/978-3-642-10622-4_7
https://doi.org/10.1145/3428218
https://doi.org/10.1103/PhysRevA.89.042338
https://doi.org/10.1145/3373376.3378488

28 Peng Yan, Hanru Jiang, and Nengkun Yu

Peter W. O’Hearn. 2019. Incorrectness Logic. Proc. ACM Program. Lang. 4, POPL, Article 10 (dec 2019), 32 pages. https:

//doi.org/10.1145/3371078

Adam Paetznick and Krysta M. Svore. 2014. Repeat-until-Success: Non-Deterministic Decomposition of Single-Qubit

Unitaries. Quantum Info. Comput. 14, 15–16 (nov 2014), 1277–1301. https://doi.org/10.26421/QIC14.15-16-2

Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: A Core Language for Quantum Circuits. SIGPLAN Not.

52, 1 (Jan 2017), 846–858. https://doi.org/10.1145/3093333.3009894

Simon Perdrix. 2008a. A Hierarchy of Quantum Semantics. Electron. Notes Theor. Comput. Sci. 192, 3 (2008), 71–83.

https://doi.org/10.1016/j.entcs.2008.10.028

Simon Perdrix. 2008b. Quantum Entanglement Analysis Based on Abstract Interpretation. In Proceedings of the 15th

International Symposium on Static Analysis (Valencia, Spain) (SAS ’08, Vol. 5079). Springer-Verlag, Berlin, Heidelberg,

270–282. https://doi.org/10.1007/978-3-540-69166-2_18

Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter O’Hearn, and Jules Villard. 2020. Local Reasoning About

the Presence of Bugs: Incorrectness Separation Logic. In Computer Aided Verification: 32nd International Conference,

CAV 2020, Los Angeles, CA, USA, July 21–24, 2020, Proceedings, Part II (Los Angeles, CA, USA). Springer-Verlag, Berlin,

Heidelberg, 225–252. https://doi.org/10.1007/978-3-030-53291-8_14

Robert Rand, Jennifer Paykin, and Steve Zdancewic. 2018. QWIRE Practice: Formal Verification of Quantum Circuits in Coq.

Electronic Proceedings in Theoretical Computer Science 266 (Feb 2018), 119–132. https://doi.org/10.4204/eptcs.266.8

Peter Selinger. 2004. Towards a Quantum Programming Language. Mathematical. Structures in Comp. Sci. 14, 4 (aug 2004),

527–586. https://doi.org/10.1017/S0960129504004256

Robert S. Smith, Michael J. Curtis, and William J. Zeng. 2016. A Practical Quantum Instruction Set Architecture.

arXiv:1608.03355 [quant-ph]

Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina Heim, Vadym Kliuchnikov, Mariia

Mykhailova, Andres Paz, and Martin Roetteler. 2018. Q#: Enabling Scalable Quantum Computing and Development with a

High-Level DSL. In Proceedings of the RealWorld Domain Specific LanguagesWorkshop 2018 (Vienna, Austria) (RWDSL2018).

Association for Computing Machinery, New York, NY, USA, Article 7, 10 pages. https://doi.org/10.1145/3183895.3183901

Runzhou Tao, Yunong Shi, Jianan Yao, John Hui, Frederic T. Chong, and Ronghui Gu. 2021. Gleipnir: Toward Practical Error

Analysis for Quantum Programs. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming

Language Design and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York,

NY, USA, 48–64. https://doi.org/10.1145/3453483.3454029

Dominique Unruh. 2019. Quantum Relational Hoare Logic. Proc. ACM Program. Lang. 3, POPL, Article 33 (jan 2019), 31 pages.

https://doi.org/10.1145/3290346

Peng Yan, Hanru Jiang, and Nengkun Yu. 2022. On Incorrectness Logic for Quantum Programs (Technical Report).

https://hrjiang.github.io/ilq/

Mingsheng Ying. 2012. Floyd–Hoare Logic for Quantum Programs. ACM Trans. Program. Lang. Syst. 33, 6, Article 19 (Jan.

2012), 49 pages. https://doi.org/10.1145/2049706.2049708

Mingsheng Ying. 2016. Foundations of Quantum Programming (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA. https://doi.org/10.1016/C2014-0-02660-3

Mingsheng Ying, Runyao Duan, Yuan Feng, and Zhengfeng Ji. 2009. Predicate Transformer Semantics of Quantum Programs.

Cambridge University Press, Cambridge, 311–360. https://doi.org/10.1017/CBO9781139193313.009

Nengkun Yu. 2019. Quantum Temporal Logic. https://doi.org/10.48550/arXiv.1908.00158

Nengkun Yu and Jens Palsberg. 2021. QuantumAbstract Interpretation. In Proceedings of the 42nd ACM SIGPLAN International

Conference on Programming Language Design and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing

Machinery, New York, NY, USA, 542–558. https://doi.org/10.1145/3453483.3454061

Nengkun Yu and Mingsheng Ying. 2012. Reachability and Termination Analysis of Concurrent Quantum Programs.

In Proceedings of the 23rd International Conference on Concurrency Theory (Newcastle upon Tyne, UK) (CONCUR’12).

Springer-Verlag, Berlin, Heidelberg, 69–83. https://doi.org/10.1007/978-3-642-32940-1_7

Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo, Jian Qin, Dian Wu, Xing

Ding, Yi Hu, et al. 2020. Quantum computational advantage using photons. Science 370, 6523 (2020), 1460–1463.

https://doi.org/10.1126/science.abe8770

Li Zhou, Gilles Barthe, Justin Hsu, Mingsheng Ying, and Nengkun Yu. 2021. A Quantum Interpretation of Bunched Logic &

Quantum Separation Logic. In Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS

’21). IEEE Computer Society, Los Alamitos, CA, USA, 1–14. https://doi.org/10.1109/LICS52264.2021.9470673

Li Zhou, Nengkun Yu, and Mingsheng Ying. 2019. An Applied Quantum Hoare Logic. In Proceedings of the 40th ACM

SIGPLAN Conference on Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association

for Computing Machinery, New York, NY, USA, 1149–1162. https://doi.org/10.1145/3314221.3314584

https://doi.org/10.1145/3371078
https://doi.org/10.1145/3371078
https://doi.org/10.26421/QIC14.15-16-2
https://doi.org/10.1145/3093333.3009894
https://doi.org/10.1016/j.entcs.2008.10.028
https://doi.org/10.1007/978-3-540-69166-2_18
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.4204/eptcs.266.8
https://doi.org/10.1017/S0960129504004256
https://arxiv.org/abs/1608.03355
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3453483.3454029
https://doi.org/10.1145/3290346
https://hrjiang.github.io/ilq/
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1016/C2014-0-02660-3
https://doi.org/10.1017/CBO9781139193313.009
https://doi.org/10.48550/arXiv.1908.00158
https://doi.org/10.1145/3453483.3454061
https://doi.org/10.1007/978-3-642-32940-1_7
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1109/LICS52264.2021.9470673
https://doi.org/10.1145/3314221.3314584

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Quantum States
	2.2 Quantum Operations
	2.3 Quantum Measurements
	2.4 Projective Quantum Predicates

	3 Challenges and Our Key ideas
	3.1 An Obstacle of Characterizing Errors: Satisfaction of a Projection Is Not Precise
	3.2 An Obstacle of Interpreting Achieving: Impossibility to Reach Every State Described by a Projection
	3.3 An Obstacle of Automation: Bounding Iteration of Loops May Sacrifice Completeness

	4 The extended quantum while language
	4.1 Syntax
	4.2 Semantics

	5 Specification Formula
	5.1 Under-approximating Quantum States
	5.2 Incorrectness Triple for Quantum Programs
	5.3 Duality Between Correctness and Incorrectness Triples

	6 The Proof System
	7 Reasoning using the logic
	7.1 Grover's Algorithm
	7.2 Quantum Teleportation
	7.3 The RUS Example

	8 Discussion on Alternative Validity Formulations
	8.1 A Naive Generalization of IL Validity Formulation
	8.2 A Weak Validity Based on Observable Relation
	8.3 A Strict Validity Based on Under-approximation

	9 Related Works
	10 Conclusion and Future Work
	References

